Cargando…

Topological methods for set-valued nonlinear analysis /

This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical eco...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tarafdar, Enayet U. (Enayet Ullah)
Otros Autores: Chowdhury, Mohammad S. R. (Mohammad Showkat Rahim), 1959-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn560636222
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 070301s2008 si ob 001 0 eng d
040 |a MERUC  |b eng  |e pn  |c MERUC  |d CCO  |d E7B  |d OCLCQ  |d QE2  |d N$T  |d CDX  |d IDEBK  |d OCLCQ  |d M6U  |d OCLCQ  |d OCLCF  |d OCLCQ  |d MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d YDXCP  |d STF  |d OCLCQ  |d LOA  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFPO  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 262622401  |a 313650734  |a 471131811  |a 646768489  |a 696629534  |a 815752227  |a 961533589  |a 962630708 
020 |a 9789812791467  |q (electronic bk.) 
020 |a 9812791469  |q (electronic bk.) 
020 |a 1281933953 
020 |a 9781281933959 
020 |z 9789812704672 
020 |z 9812704671 
029 1 |a AU@  |b 000051417795 
029 1 |a AU@  |b 000058360756 
029 1 |a CDX  |b 9528620 
029 1 |a DEBBG  |b BV043119084 
029 1 |a DEBBG  |b BV044179690 
029 1 |a DEBSZ  |b 405249373 
029 1 |a DEBSZ  |b 422095230 
029 1 |a DEBSZ  |b 445556293 
029 1 |a GBVCP  |b 803089325 
029 1 |a NZ1  |b 14241043 
035 |a (OCoLC)560636222  |z (OCoLC)262622401  |z (OCoLC)313650734  |z (OCoLC)471131811  |z (OCoLC)646768489  |z (OCoLC)696629534  |z (OCoLC)815752227  |z (OCoLC)961533589  |z (OCoLC)962630708 
050 4 |a QA611.3  |b .T37 2008eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a HRH  |2 bicssc 
082 0 4 |a 515/.2  |2 22 
049 |a UAMI 
100 1 |a Tarafdar, Enayet U.  |q (Enayet Ullah)  |1 https://id.oclc.org/worldcat/entity/E39PCjGgDXyMR8pk78t7TWm3cd 
245 1 0 |a Topological methods for set-valued nonlinear analysis /  |c Enayet U. Tarafdar & Mohammad S.R. Chowdhury. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2008. 
300 |a 1 online resource (xiv, 612 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 583-603) and index. 
588 0 |a Print version record. 
520 |a This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical economics, the Pareto optimum in optimization, and applications to best approximation theory, partial equations and boundary value problems. Self-contained and unified in presentation, the book considers the existence of equilibrium points of abstract economics in topological vector spaces from the viewpoin. 
505 0 |a 1. Introduction -- 2. Contraction mappings. 2.1. Contraction mapping principle in uniform topological spaces and applications. 2.2. Banach contraction mapping principle in uniform spaces. 2.3. Further generalization of Banach contraction mapping principle. 2.4. Changing norm. 2.5. The contraction mapping principle applied to the Cauchy-Kowalevsky theorem. 2.6. An implicit function theorem for a set of mappings and its application to nonlinear hyperbolic boundary value problem as application of contraction mapping principle. 2.7. Set-valued contractions. 2.8. Iterated Function Systems (IFS) and attractor. 2.9. Large contractions. 2.10. Random fixed point and set-valued random contraction -- 3. Some fixed point theorems in partially ordered sets. 3.1. Fixed point theorems and applications to economics. 3.2. Fixed point theorem on partially ordered sets. 3.3. Applications to games and economics. 3.4. Lattice theoretical fixed point theorems of Tarski. 3.5. Applications of lattice fixed point theorem of Tarski to integral equations. 3.6. The Tarski-Kantorovitch principle. 3.7. The iterated function systems on (2[symbol], [symbol]). 3.8. The iterated function systems on (C(X), [symbol]). 3.9. The iterated function system on (K(X), [symbol]). 3.10. Continuity of maps on countably compact and sequential spaces. 3.11. Solutions of impulsive differential equations -- 4. Topological fixed point theorems. 4.1. Brouwer fixed point theorem. 4.2. Fixed point theorems and KKM theorems. 4.3. Applications on Minimax principles. 4.4. More on sets with convex sections. 4.5. More on the extension of KKM theorem and Ky Fan's Minimax principle. 4.6. A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem. 4.7. More on fixed point theorems. 4.8. Applications of fixed point theorems to equilibrium analysis in mathematical economics and game theory. 4.9. Fixed point of [symbol]-condensing mapping, maximal elements and equilibria. 4.10. Coincidence points and related results, an analysis on H-spaces. 4.11. Applications to mathematical economics: an analogue of Debreu's social equilibrium existence theorem -- 5. Variational and quasivariational inequalities in topological vector spaces and generalized games. 5.1. Simultaneous variational inequalities. 5.2. Variational inequalities for setvalued mappings. 5.3. Variational inequalities and applications. 5.4. Duality in variational inequalities. 5.5. A variational inequality in non-compact sets with some applications. 5.6. Browder-Hartman-Stampacchia variational inequalities for set-valued monotone operators. 5.7. Some generalized variational inequalities with their applications. 5.8. Some results of Tarafdar and Yuan on generalized variational inequalities in locally convex topological vector spaces. 5.9. Generalized variational inequalities for quasi-monotone and quasi- semi-monotone operators. 5.10. Generalization of Ky Fan's minimax inequality with applications to generalized variational inequalities for pseudo-monotone type I operators and fixed point theorems. 5.11. Generalized variational-like inequalities for pseudo-monotone type I operators. 5.12. Generalized quasi-variational inequalities. 5.13. Generalized quasi-variational inequalities for lower and upper hemi-continuous operators on non-compact sets. 5.14. Generalized quasi-variational inequalities for upper semi-continuous operators on non-compact sets. 5.15. Generalized quasi-variational inequalities for pseudo-monotone set-valued mappings. 5.16. Non-linear variational inequalities and the existence of equilibrium in economics with a Riesz space of commodities. 5.17. Equilibria of non-compact generalized games with L*. 5.18. Equilibria of non-compact generalized games -- 6. Best approximation and fixed point theorems for set-valued mappings in topological vector spaces. 6.1. Single-valued case. 6.2. Set-valued case -- 7. Degree theories for set-valued mappings. 7.1. Degree theory for set-valued ultimately compact vector fields. 7.2. Coincidence degree for non-linear single-valued perturbations of linear Fredholm mappings. 7.3. On the existence of solutions of the equation Lx [symbol] Nx and a coincidence degree theory. 7.4. Coincidence degree for multi-valued mappings with non-negative index. 7.5. Applications of equivalence theorems with single-valued mappings: an approach to non-linear elliptic boundary value problems. 7.6. Further results in coincidence degree theory. 7.7. Tarafdar and Thompson's theory of bifurcation for the solutions of equations involving set-valued mapping. 7.8. Tarafdar and Thompson's results on the solvability of non-linear and non-compact operator equations -- 8. Nonexpansive types of mappings and fixed point pheorems in locally convex topological vector spaces. 8.1. Nonexpansive types of mappings in locally convex topological vector spaces. 8.2. Set-valued mappings of nonexpansive type. 8.3. Fixed point theorems for condensing set-valued mappings on locally convex topological vector spaces. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Set-valued maps. 
650 0 |a Nonlinear functional analysis. 
650 6 |a Applications multivoques. 
650 6 |a Analyse fonctionnelle non linéaire. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Nonlinear functional analysis  |2 fast 
650 7 |a Set-valued maps  |2 fast 
700 1 |a Chowdhury, Mohammad S. R.  |q (Mohammad Showkat Rahim),  |d 1959-  |1 https://id.oclc.org/worldcat/entity/E39PCjJygmWTbm7rYM36H9TQHK 
758 |i has work:  |a Topological methods for set-valued nonlinear analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGbghwbVdyR46FCJcPdytX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Tarafdar, Enayet U. (Enayet Ullah).  |t Topological methods for set-valued nonlinear analysis.  |d Singapore ; Hackensack, NJ : World Scientific, ©2008  |w (DLC) 2008275071 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681767  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684966 
938 |a Coutts Information Services  |b COUT  |n 9528620 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681767 
938 |a ebrary  |b EBRY  |n ebr10255624 
938 |a EBSCOhost  |b EBSC  |n 236085 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 193395 
938 |a YBP Library Services  |b YANK  |n 2891977 
994 |a 92  |b IZTAP