Modeling and computations in dynamical systems : in commemoration of the 100th anniversary of the birth of John von Neumann /
The Hungarian born mathematical genius, John von Neumann, was undoubtedly one of the greatest and most influential scientific minds of the 20th century. Von Neumann made fundamental contributions to Computing and he had a keen interest in Dynamical Systems, specifically Hydrodynamic Turbulence. This...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; London :
World Scientific,
©2006.
|
Colección: | World Scientific series on nonlinear science. Special theme issues and proceedings ;
v. 13. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Editorial ; Transport in Dynamical Astronomy and Multibody Problems ; 1. Introduction ; 2. Description of the PCR3BP Global Dynamics ; 3. Computing Transport ; 4. Example: The Sun-Jupiter-Asteroid System ; 5. Conclusions and Future Directions
- A Brief Survey on the Numerical Dynamics for Functional Differential Equations 1. Introduction ; 2. Discretization as a Family of Approximating Discrete-Time Semidynamical Systems ; 3. Qualitative Numerics for Delay Equations ; 4. Remarks on Functional Differential Equations
- Bifurcations and Continuous Transitions of Attractors in Autonomous and Nonautcnomcus Systems 1. Introduction ; 2. Autonomous Systems ; 3. Nonautonomous Systems ; 4. A Total Stability Theorem ; 5. Applications of the Total Stability Theorem ; 6. Concluding Remarks and Questions
- A. Appendix: Proof of Theorem 1 A Survey of Methods for Computing (Un)Stable Manifolds of Vector Fields ; 1. Introduction ; 2. Approximation by Geodesic Level Sets ; 3. BVP Continuation of Trajectories ; 4. Computation of Fat Trajectories ; 5. PDE Formulation ; 6. Box Covering
- 7. Discussion Commutators of Skew-Symmetric Matrices ; 1. Norms and Commutators in Mn[R] and sO(n) ; 2. The Reduced Commutator Matrix in so(n) ; 3. The Radius of so(n) for n> 4 ; 4. Conclusion ; Simple Neural Networks that Optimize Decisions ; 1. Introduction