Cargando…

Evolutionary optimization /

The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly ad...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sarker, Ruhul A., Mohammadian, Masoud, Yao, Xin, 1962-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : Kluwer Academic Publishers, ©2002.
Colección:International series in operations research & management science ; 48.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn559313621
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 011121s2002 maua ob 001 0 eng d
010 |z  2001058187 
040 |a MERUC  |b eng  |e pn  |c MERUC  |d CCO  |d E7B  |d OCLCQ  |d N$T  |d EBLCP  |d UV0  |d UAB  |d OCLCQ  |d IDEBK  |d OCLCO  |d OCLCQ  |d YDXCP  |d NLGGC  |d OCLCQ  |d GW5XE  |d OCLCF  |d DKDLA  |d OCLCQ  |d TEFOD  |d COO  |d TEFOD  |d OCLCQ  |d AZK  |d MOR  |d PIFBR  |d ZCU  |d OTZ  |d OCLCQ  |d COCUF  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d CEF  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d CNTRU  |d OCLCQ  |d UKCRE  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 53998931  |a 55047387  |a 66815128  |a 71229264  |a 228110249  |a 228375391  |a 467128206  |a 646722655  |a 722307272  |a 888500194  |a 961650409  |a 962687503  |a 988533865  |a 992067239  |a 994809943  |a 1035655717  |a 1037927573  |a 1038610933  |a 1044209661  |a 1045497680  |a 1055371065  |a 1056381952  |a 1058583371  |a 1081231303  |a 1097285454  |a 1153472689 
020 |a 0306480417  |q (electronic bk.) 
020 |a 9780306480416  |q (electronic bk.) 
020 |a 6610462216 
020 |a 9786610462216 
020 |a 1280462213 
020 |a 9781280462214 
020 |z 9780792376545 
020 |z 0792376544 
024 7 |a 10.1007/b101816  |2 doi 
029 1 |a AU@  |b 000053229695 
029 1 |a DEBBG  |b BV044091135 
029 1 |a NZ1  |b 12007747 
029 1 |a NZ1  |b 15290559 
029 1 |a DKDLA  |b 820120-katalog:999911311605765 
035 |a (OCoLC)559313621  |z (OCoLC)53998931  |z (OCoLC)55047387  |z (OCoLC)66815128  |z (OCoLC)71229264  |z (OCoLC)228110249  |z (OCoLC)228375391  |z (OCoLC)467128206  |z (OCoLC)646722655  |z (OCoLC)722307272  |z (OCoLC)888500194  |z (OCoLC)961650409  |z (OCoLC)962687503  |z (OCoLC)988533865  |z (OCoLC)992067239  |z (OCoLC)994809943  |z (OCoLC)1035655717  |z (OCoLC)1037927573  |z (OCoLC)1038610933  |z (OCoLC)1044209661  |z (OCoLC)1045497680  |z (OCoLC)1055371065  |z (OCoLC)1056381952  |z (OCoLC)1058583371  |z (OCoLC)1081231303  |z (OCoLC)1097285454  |z (OCoLC)1153472689 
037 |b OverDrive, Inc.  |n http://www.overdrive.com 
037 |a 7D01BBB6-7345-42CB-9902-04F70C99FA73  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a T57  |b .E96 2002eb 
072 7 |a MAT  |x 011000  |2 bisacsh 
072 7 |a KJC  |2 bicssc 
082 0 4 |a 519.3  |2 21 
049 |a UAMI 
245 0 0 |a Evolutionary optimization /  |c edited by Ruhul Sarker, Masoud Mohammadian, Xin Yao. 
260 |a Boston :  |b Kluwer Academic Publishers,  |c ©2002. 
300 |a 1 online resource (xiv, 418 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a International series in operations research & management science ;  |v 48 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple problems where conventional techniques work well. Clearly there is a need for a volume that both reviews state-of-the-art evolutionary computation techniques, and surveys the most recent developments in their use for solving complex OR/MS problems. This volume on Evolutionary Optimization seeks to fill this need. Evolutionary Optimization is a volume of invited papers written by leading researchers in the field. All papers were peer reviewed by at least two recognized reviewers. The book covers the foundation as well as the practical side of evolutionary optimization. 
505 0 |a Cover -- Contents -- Preface -- Contributing Authors -- Part I Introduction -- 1 Conventional Optimization Techniques -- 1 Classifying Optimization Models -- 2 Linear Programming -- 3 Goal Programming -- 4 Integer Programming -- 5 Nonlinear Programming -- 6 Simulation -- 7 Further Reading -- 2 Evolutionary Computation -- 1 What Is Evolutionary Computation -- 2 A Brief Overview of Evolutionary Computation -- 3 Evolutionary Algorithm and Generate-and-Test Search Algorithm -- 4 Search Operators -- 5 Summary -- Part II Single Objective Optimization -- 3 Evolutionary Algorithms and Constrained Optimization -- 1 Introduction -- 2 General considerations -- 3 Numerical optimization -- 4 Final Remarks -- 4 Constrained Evolutionary Optimization -- 1 Introduction -- 2 The Penalty Function Method -- 3 Stochastic Ranking -- 4 Global Competitive Ranking -- 5 How Penalty Methods Work -- 6 Experimental Study -- 7 Conclusion -- Appendix: Test Function Suite -- Part III Multi-Objective Optimization -- 5 Evolutionary Multiobjective Optimization -- 1 Introduction -- 2 Definitions -- 3 Historical Roots -- 4 A Quick Survey of EMOO Approaches -- 5 Current Research -- 6 Future Research Paths -- 7 Summary -- 6 MEA for Engineering Shape Design -- 1 Introduction -- 2 Multi-Objective Optimization and Pareto-Optimality -- 3 Elitist Non-dominated Sorting GA (NSGA-II) -- 4 Hybrid Approach -- 5 Optimal Shape Design -- 6 Simulation Results -- 7 Conclusion -- 7 Assessment Methodologies for MEAs -- 1 Introduction -- 2 Assessment Methodologies -- 3 Discussion -- 4 Comparing Two Algorithms: An Example -- 5 Conclusions and Future Research Paths -- Part IV Hybrid Algorithms -- 8 Hybrid Genetic Algorithms -- 1 Introduction -- 2 Hybridizing GAs with Local Improvement Procedures -- 3 Adaptive Memory GA's -- 4 Summary -- 9 Combining choices of heuristics -- 1 Introduction -- 2 GAs and parameterised algorithms -- 3 Job Shop Scheduling -- 4 Scheduling chicken catching -- 5 Timetabling -- 6 Discussion and future directions -- 10 Nonlinear Constrained Optimization -- 1 Introduction -- 2 Previous Work -- 3 A General Framework to look for SPdn -- 4 Experimental Results -- 5 Conclusions -- Part V Parameter Selection in EAs -- 11 Parameter Selection -- 1 Introduction -- 2 Parameter tuning vs. parameter control -- 3 An example -- 4 Classification of Control Techniques -- 5 Various forms of control -- 6 Discussion -- Part VI Application of EAs to Practical Problems -- 12 Design of Production Facilities -- 1 Introduction -- 2 Design for Material Flow When the Number of I/O Points is Unconstrained -- 3 Design for Material Flow for a Single I/O Point -- 4 Considering Intradepartmental Flow -- 5 Material Handling System Design -- 6 Concluding Remarks -- 13 Virtual Population and Acceleration Techniques -- 1 Introduction -- 2 Concept of Virtual Population -- 3 Solution Acceleration Techniques -- 4 Accelerated GA and Acceleration Sche. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical optimization. 
650 0 |a Operations research. 
650 0 |a Evolutionary programming (Computer science) 
650 2 |a Operations Research 
650 6 |a Optimisation mathématique. 
650 6 |a Recherche opérationnelle. 
650 6 |a Programmation évolutive (Informatique) 
650 6 |a Programmation évolutive. 
650 7 |a MATHEMATICS  |x Game Theory.  |2 bisacsh 
650 7 |a Evolutionary programming (Computer science)  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Operations research  |2 fast 
700 1 |a Sarker, Ruhul A. 
700 1 |a Mohammadian, Masoud. 
700 1 |a Yao, Xin,  |d 1962- 
758 |i has work:  |a Evolutionary optimization (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFrWtMC39Vrfdb8HymWvH3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Evolutionary optimization.  |d Boston : Kluwer Academic Publishers, ©2002  |w (DLC) 2001058187 
830 0 |a International series in operations research & management science ;  |v 48. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3035890  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH3773229 
938 |a EBL - Ebook Library  |b EBLB  |n EBL197656 
938 |a ebrary  |b EBRY  |n ebr10067260 
938 |a EBSCOhost  |b EBSC  |n 99340 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 46221 
938 |a YBP Library Services  |b YANK  |n 2292487 
994 |a 92  |b IZTAP