Cargando…

Multiplier convergent series /

If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Swartz, Charles, 1938-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, N.J. : World Scientific Pub., ©2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn554919213
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |nu---unuuu
008 100315s2009 nju ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OSU  |d EBLCP  |d IDEBK  |d OCLCQ  |d YDXCP  |d DEBSZ  |d OCLCQ  |d NLGGC  |d OCLCQ  |d M6U  |d OCLCF  |d OCLCQ  |d AGLDB  |d MOR  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d VTS  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d JBG  |d WYU  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 696629358 
020 |a 9789812833884  |q (electronic bk.) 
020 |a 9812833889  |q (electronic bk.) 
020 |z 9789812833877 
020 |z 9812833870 
029 1 |a AU@  |b 000051396741 
029 1 |a DEBBG  |b BV043165516 
029 1 |a DEBBG  |b BV044141433 
029 1 |a DEBSZ  |b 379313014 
029 1 |a DEBSZ  |b 421915153 
029 1 |a DEBSZ  |b 445567910 
035 |a (OCoLC)554919213  |z (OCoLC)696629358 
050 4 |a QA295  |b .S93 2009eb 
072 7 |a MAT  |x 016000  |2 bisacsh 
082 0 4 |a 515/.243  |2 22 
049 |a UAMI 
100 1 |a Swartz, Charles,  |d 1938-  |1 https://id.oclc.org/worldcat/entity/E39PBJbWrTbV8QTKgR6dhYwgrq 
245 1 0 |a Multiplier convergent series /  |c Charles Swartz. 
260 |a Hackensack, N.J. :  |b World Scientific Pub.,  |c ©2009. 
300 |a 1 online resource (x, 253 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 245-249) and index. 
505 0 |a Introduction -- Basic properties of multiplier convergent series -- Applications of multiplier convergent series -- The Orlicz-Pettis theorem -- Orlicz-Pettis theorems for the strong topology -- Orlicz-Pettis theorems for linear operators -- The Hahn-Schur theorem -- Spaces of multiplier convergent series and multipliers -- The Antosik interchange theorem -- Automatic continuity of matrix mappings -- Operator valued series and vector valued multipliers -- Orlicz-Pettis theorems for operator valued series -- Hahn-Schur theorems for operator valued series -- Automatic continuity for operator valued matrices. 
588 0 |a Print version record. 
520 |a If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in [symbol] are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Convergence. 
650 0 |a Multipliers (Mathematical analysis) 
650 0 |a Series, Arithmetic. 
650 0 |a Orlicz spaces. 
650 4 |a Applied Mathematics. 
650 4 |a Engineering & Applied Sciences. 
650 6 |a Convergence (Mathématiques) 
650 6 |a Multiplicateurs (Analyse mathématique) 
650 6 |a Séries arithmétiques. 
650 6 |a Espaces d'Orlicz. 
650 7 |a arithmetic progressions.  |2 aat 
650 7 |a MATHEMATICS  |x Infinity.  |2 bisacsh 
650 7 |a Convergence  |2 fast 
650 7 |a Multipliers (Mathematical analysis)  |2 fast 
650 7 |a Orlicz spaces  |2 fast 
650 7 |a Series, Arithmetic  |2 fast 
776 0 8 |i Print version:  |a Swartz, Charles, 1938-  |t Multiplier convergent series.  |d Hackensack, N.J. : World Scientific Publishing, ©2009  |z 9789812833877  |w (DLC) 2009277312  |w (OCoLC)228372408 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=477251  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24686082 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL477251 
938 |a EBSCOhost  |b EBSC  |n 305214 
938 |a YBP Library Services  |b YANK  |n 3161650 
994 |a 92  |b IZTAP