Cargando…

Multiplier convergent series /

If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Swartz, Charles, 1938-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, N.J. : World Scientific Pub., ©2009.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:If [symbol] is a space of scalar-valued sequences, then a series [symbol] xj in a topological vector space X is [symbol]-multiplier convergent if the series [symbol] tjxj converges in X for every [symbol]. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in [symbol] are also developed for multiplier convergent series. Finally, the notion of multiplier convergent series is extended to operator-valued series and vector-valued multipliers.
Descripción Física:1 online resource (x, 253 pages)
Bibliografía:Includes bibliographical references (pages 245-249) and index.
ISBN:9789812833884
9812833889