Cargando…

Special matrices of mathematical physics : stochastic, circulant, and Bell matrices /

This work expounds three special kinds of matrices that are of physical interest, centring on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, non-equilibrium, and hypersensitivity to ini...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aldrovandi, R. (Ruben)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, N.J. : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices
  • ch. 2. Evolving systems
  • ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties
  • ch. 4. Glass transition
  • ch. 5. The Kerner model. 5.1. A simple example: Se-As glass
  • ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time
  • ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity
  • ch. 8. Prelude
  • ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks
  • ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups
  • ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric
  • ch. 12. An organizing tool
  • ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments
  • ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants
  • ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates
  • ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.