Applied engineering mathematics /
Annotation This book strives to provide a concise and yet comprehensive cover-age of all major mathematical methods in engineering. Topics in-clude advanced calculus, ordinary and partial differential equations, complex variables, vector and tensor analysis, calculus of variations, integral transfor...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK :
Cambridge International Science Publishing,
2007.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Preface
- Acknowledgements
- About the Author
- Contents
- 1. Calculus
- 1.1 Differentiations
- 1.2 Integrations
- 1.3 Partial Differentiation
- 1.4 Multiple Integrals
- 1.5 Some Special Integrals
- 2. Vector Analysis
- 2.1 Vectors
- 2.1.1 Dot Product and Norm
- 2.2 Vector Algebra
- 2.3 Applications
- 3. Matrix Algebra
- 3.1 Matrix
- 3.2 Determinant
- 3.3 Inverse
- 3.4 Matrix Exponential
- 3.5 Hermitian and Quadratic Forms
- 3.6 Solution of linear systems
- 4. Complex Variables
- 4.1 Complex Numbers and Functions
- 4.2 Hyperbolic Functions
- 4.3 Analytic Functions
- 4.4 Complex Integrals
- 5. Ordinary Differential Equations
- 5.1 Introduction
- 5.2 First Order ODEs
- 5.3 Higher Order ODEs
- 5.4 Linear System
- 5.5 Sturm-Liouville Equation
- 5.5.1 Bessel Equation
- 6. Recurrence Equations
- 6.1 Linear Difference Equations
- 6.2 Chaos and Dynamical Systems
- 6.3 Self-similarity and Fractals
- 7. Vibration and Harmonic Motion
- 7.1 Undamped Forced Oscillations
- 7.2 Damped Forced Oscillations
- 7.3 Normal Modes
- 7.4 Small Amplitude Oscillations
- 8. Integral Transforms
- 8.1 Fourier Transform
- 8.2 Laplace Transforms
- 8.3 Wavelet
- 9. Partial Differential Equations
- 9.1 First Order PDE
- 9.2 Classification
- 9.3 Classic PDEs
- 10. Techniques for Solving PDEs
- 10.1 Separation of Variables
- 10.2 Transform Methods
- 10.3 Similarity Solution
- 10.4 Travelling Wave Solution
- 10.5 Green's Function
- 10.6 Hybrid Method
- 11. Integral Equations
- 11.1 Calculus of Variations
- 11.2 Integral Equations
- 11.3 Solution of Integral Equations
- 12. Tensor Analysis
- 12.1 Notations
- 12.2 Tensors
- 12.3 Tensor Analysis
- 13. Elasticity
- 13.1 Hooke's Law and Elasticity
- 13.2 Maxwell's Reciprocal Theorem
- 13.3 Equations of Motion
- 13.4 Airy Stress Functions.
- 13.5 Euler-Bernoulli Beam Theory
- 14. Mathematical Models
- 14.1 Classic Models
- 14.2 Other PDEs
- 15. Finite Difference Method
- 15.1 Integration of ODEs
- 15.2 Hyperbolic Equations
- 15.3 Parabolic Equation
- 15.4 Elliptical Equation
- 16. Finite Volume Method
- 16.1 Introduction
- 16.2 Elliptic Equations
- 16.3 Parabolic Equations
- 16.4 Hyperbolic Equations
- 17. Finite Element Method
- 17.1 Concept of Elements
- 17.2 Finite Element Formulation
- 17.3 Elasticity
- 17.4 Heat Conduction
- 17.5 Time-Dependent Problems
- 18. Reaction Diffusion System
- 18.1 Heat Conduction Equation
- 18.2 Nonlinear Equations
- 18.3 Reaction-Diffusion System
- 19. Probability and Statistics
- 19.1 Probability
- 19.2 Statistics
- References
- Appendix A Mathematical Formulas
- A.1 Differentiations and Integrations
- A.2 Vectors and Matrices
- A.3 Asymptotics
- A.4 Special Integrals
- Index.