Cargando…

Moments and moment invariants in pattern recognition /

Moments as projections of an image's intensity onto a proper polynomial basis can be applied to many different aspects of image processing. These include invariant pattern recognition, image normalization, image registration, focus/ defocus measurement, and watermarking. This book presents a su...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Flusser, Jan
Otros Autores: Suk, Tomás, Zitová, Barbara
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, U.K. ; Hoboken, N.J. : J. Wiley, 2009.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Contents
  • Authors biographies
  • Preface
  • Acknowledgments
  • 1 Introduction to moments
  • 1.1 Motivation
  • 1.2 What are invariants?
  • 1.2.1 Categories of invariant
  • 1.3 What are moments?
  • 1.3.1 Geometric and complex moments
  • 1.3.2 Orthogonal moments
  • 1.4 Outline of the book
  • References
  • 2 Moment invariants to translation, rotation and scaling
  • 2.1 Introduction
  • 2.1.1 Invariants to translation
  • 2.1.2 Invariants to uniform scaling
  • 2.1.3 Traditional invariants to rotation
  • 2.2 Rotation invariants from complex moments
  • 2.2.1 Construction of rotation invariants
  • 2.2.2 Construction of the basis
  • 2.2.3 Basis of invariants of the second and third orders
  • 2.2.4 Relationship to the Hu invariants
  • 2.3 Pseudoinvariants
  • 2.4 Combined invariants to TRS and contrast changes
  • 2.5 Rotation invariants for recognition of symmetric objects
  • 2.5.1 Logo recognition
  • 2.5.2 Recognition of simple shapes
  • 2.5.3 Experiment with a baby toy
  • 2.6 Rotation invariants via image normalization
  • 2.7 Invariants to nonuniform scaling
  • 2.8 TRS invariants in 3D
  • 2.9 Conclusion
  • References
  • 3 Affine moment invariants
  • 3.1 Introduction
  • 3.1.1 Projective imaging of a 3D world
  • 3.1.2 Projective moment invariants
  • 3.1.3 Affine transformation
  • 3.1.4 AMIs
  • 3.2 AMIs derived from the Fundamental theorem
  • 3.3 AMIs generated by graphs
  • 3.3.1 The basic concept
  • 3.3.2 Representing the invariants by graphs
  • 3.3.3 Independence of the AMIs
  • 3.3.4 The AMIs and tensors
  • 3.3.5 Robustness of the AMIs
  • 3.4 AMIs via image normalization
  • 3.4.1 Decomposition of the affine transform
  • 3.4.2 Violation of stability
  • 3.4.3 Relation between the normalized moments and the AMIs
  • 3.4.4 Affine invariants via half normalization
  • 3.4.5 Affine invariants from complex moments
  • 3.5 Derivation of the AMIs from the CayleyAronhold equation
  • 3.5.1 Manual solution
  • 3.5.2 Automatic solution
  • 3.6 Numerical experiments
  • 3.6.1 Digit recognition
  • 3.6.2 Recognition of symmetric patterns
  • 3.6.3 The childrens mosaic
  • 3.7 Affine invariants of color images
  • 3.8 Generalization to three dimensions
  • 3.8.1 Method of geometric primitives
  • 3.8.2 Normalized moments in 3D
  • 3.8.3 Half normalization in 3D
  • 3.8.4 Direct solution of the CayleyAronhold equation
  • 3.9 Conclusion
  • Appendix
  • References
  • 4 Implicit invariants to elastic transformations
  • 4.1 Introduction
  • 4.2 General moments under a polynomial transform
  • 4.3 Explicit and implicit invariants
  • 4.4 Implicit invariants as a minimization task
  • 4.5 Numerical experiments
  • 4.5.1 Invariance and robustness test
  • 4.5.2 ALOI classification experiment
  • 4.5.3 Character recognition on a bottle
  • 4.6 Conclusion
  • References
  • 5 Invariants to convolution
  • 5.1 Introduction
  • 5.2 Blur invariants for centrosymmetric PSFs
  • 5.2.1 Template matching experiment
  • 5.2.2 Invariants to linear motion blur
  • 5.2.3 Extension to n dimensions
  • 5.2.4 Possible applications and limitations
  • 5.3 Blur invariants for N-fold symmetric PSFs
  • 5.3.1 Blur invariants for circularly symmetric PSFs
  • 5.3.2 Blur invariants for Gaussian PSFs
  • 5.4 Combined invariants
  • 5.4.1 Combined i.