Cargando…

The Limits of Abstraction.

Kit Fine develops a Fregean theory of abstraction, and suggests that it may yield a new philosophical foundation for mathematics, one that can account for both our reference to various mathematical objects and our knowledge of various mathematical truths. & i & The Limits of Abstraction &...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fine, Kit
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : OUP Oxford, 2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn476260200
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 091207s2008 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d MHW  |d OCLCQ  |d IDEBK  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 815688825 
020 |a 9780191567261  |q (electronic bk.) 
020 |a 0191567264  |q (electronic bk.) 
020 |a 1281770124 
020 |a 9781281770127 
029 1 |a AU@  |b 000048784451 
029 1 |a DEBBG  |b BV044134131 
029 1 |a DEBSZ  |b 379309416 
029 1 |a DEBSZ  |b 445993863 
035 |a (OCoLC)476260200  |z (OCoLC)815688825 
050 4 |a QA8.4 
072 7 |a KNXC  |2 bicssc 
082 0 4 |a 510.1 
049 |a UAMI 
100 1 |a Fine, Kit. 
245 1 4 |a The Limits of Abstraction. 
260 |a Oxford :  |b OUP Oxford,  |c 2008. 
300 |a 1 online resource (214 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Kit Fine develops a Fregean theory of abstraction, and suggests that it may yield a new philosophical foundation for mathematics, one that can account for both our reference to various mathematical objects and our knowledge of various mathematical truths. & i & The Limits of Abstraction & /i & breaks new ground both technically and philosophically. - ;What is abstraction? To what extent can it account for the existence and identity of abstract objects? And to what extent can it be used as a foundation for mathematics? Kit Fine provides rigorous and systematic answers to these questions along the lin. 
588 0 |a Print version record. 
505 0 |a Introduction; I. Philosophical Introduction; II. The Context Principle; III. The Analysis of Acceptability; IV. The General Theory of Abstraction; References; Main Index; Index of First Occurrence of Formal Symbols and Definitions. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Abstraction. 
650 0 |a Mathematics  |x Philosophy. 
650 6 |a Abstraction. 
650 6 |a Mathématiques  |x Philosophie. 
650 7 |a abstraction.  |2 aat 
650 7 |a Abstraction  |2 fast 
650 7 |a Mathematics  |x Philosophy  |2 fast 
776 1 |z 9780199533633 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=422880  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL422880 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 177012 
994 |a 92  |b IZTAP