Topological Vector Spaces, Distributions and Kernels.
Topological vector spaces, distributions and kernels.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Burlington :
Elsevier,
1967.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Topological Vector Spaces, Distributions and Kernels
- Copyright Page
- Contents
- Preface
- Part I: Topological Vector Spaces. Spaces of Functions
- Chapter 1. Filters. Topological Spaces. Continuous Mappings
- Chapter 2. Vector Spaces. Linear Mappings
- Chapter 3. Topological Vector Spaces. Definition
- Chapter 4. Hausdorff Topological Vector Spaces. Quotient Topological Vector Spaces. Continuous Linear Mappings
- Hausdorff Topological Vector Spaces
- Quotient Topological Vector Spaces
- Continuous Linear Mappings.
- Chapter 5. Cauchy Filters. Complete Subsets. Completion
- Chapter 6. Compact Sets
- Chapter 7. Locally Convex Spaces. Seminorms
- Chapter 8. Metrizable Topological Vector Spaces
- Chapter 9. Finite Dimensional Hausdorff Topological Vector Spaces. Linear Subspaces with Finite Codimension. Hyperplanes
- Chapter 10. Fréchet Spaces. Examples
- Example I. The Space of ℓk Functions in an Open Subset of Rn
- Example II. The Space of Holomorphic Functions in an Open Subset of Cn
- Example III. The Space of Formal Power Series in n Indeterminates.
- Example IV. The Space e of e Functions in Rn Rapidly Decreasing at Infinity
- Chapter 11. Normable Spaces. Banach Spaces. Examples.
- Chapter 12. Hilbert Spaces
- Chapter 13. Spaces LF. Examples
- Chapter 14. Bounded Sets
- Chapter 15. Approximation Procedures in Spaces of Functions
- Chapter 16. Partitions of Unity
- Chapter 17. The Open Mapping Theorem
- Part II: Duality. Spaces of Distributions
- Chapter 18. The Hahn-Banach Theorem
- (1) Problems of Approximation
- (2) Problems of Existence
- (3) Problems of Separation
- Chapter 19. Topologies on the Dual.
- Chapter 20. Examples of Duals among Lp Spaces
- Example I. The Duals of the Spaces of Sequences lp(1 {600} p <+)
- Example II. The Duals of the Spaces Lp() (1 {600} p <+)
- Chapter 21. Radon Measures. Distributions
- Radon Measures in an Open Subset of Rn
- Distributions in an Open Subset of Rn
- Chapter 22. More Duals: Polynomials and Formal Power Series. Analytic Functionals
- Polynomials and Formal Power Series
- Analytic Functionals in an Open Subset of Cn
- Chapter 23. Transpose of a Continuous Linear Map
- Example I. Injections of Duals.
- Example II. Restrictions and Extensions
- Example III. Differential Operators
- Chapter 24. Support and Structure of a Distribution
- Distributions with Support at the Origin
- Chapter 25. Example of Transpose: Fourier Transformation of Tempered Distributions
- Chapter 26. Convolution of Functions
- Chapter 27. Example of Transpose: Convolution of Distributions
- Chapter 28. Approximation of Distributions by Cutting and Regularizing
- Chapter 29. Fourier Transforms of Distributions with Compact Support The Paley-Wiener Theorem.