Cargando…

Topological Vector Spaces, Distributions and Kernels.

Topological vector spaces, distributions and kernels.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Treves, Francois
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier, 1967.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Topological Vector Spaces, Distributions and Kernels
  • Copyright Page
  • Contents
  • Preface
  • Part I: Topological Vector Spaces. Spaces of Functions
  • Chapter 1. Filters. Topological Spaces. Continuous Mappings
  • Chapter 2. Vector Spaces. Linear Mappings
  • Chapter 3. Topological Vector Spaces. Definition
  • Chapter 4. Hausdorff Topological Vector Spaces. Quotient Topological Vector Spaces. Continuous Linear Mappings
  • Hausdorff Topological Vector Spaces
  • Quotient Topological Vector Spaces
  • Continuous Linear Mappings.
  • Chapter 5. Cauchy Filters. Complete Subsets. Completion
  • Chapter 6. Compact Sets
  • Chapter 7. Locally Convex Spaces. Seminorms
  • Chapter 8. Metrizable Topological Vector Spaces
  • Chapter 9. Finite Dimensional Hausdorff Topological Vector Spaces. Linear Subspaces with Finite Codimension. Hyperplanes
  • Chapter 10. Fréchet Spaces. Examples
  • Example I. The Space of ℓk Functions in an Open Subset of Rn
  • Example II. The Space of Holomorphic Functions in an Open Subset of Cn
  • Example III. The Space of Formal Power Series in n Indeterminates.
  • Example IV. The Space e of e Functions in Rn Rapidly Decreasing at Infinity
  • Chapter 11. Normable Spaces. Banach Spaces. Examples.
  • Chapter 12. Hilbert Spaces
  • Chapter 13. Spaces LF. Examples
  • Chapter 14. Bounded Sets
  • Chapter 15. Approximation Procedures in Spaces of Functions
  • Chapter 16. Partitions of Unity
  • Chapter 17. The Open Mapping Theorem
  • Part II: Duality. Spaces of Distributions
  • Chapter 18. The Hahn-Banach Theorem
  • (1) Problems of Approximation
  • (2) Problems of Existence
  • (3) Problems of Separation
  • Chapter 19. Topologies on the Dual.
  • Chapter 20. Examples of Duals among Lp Spaces
  • Example I. The Duals of the Spaces of Sequences lp(1 {600} p <+)
  • Example II. The Duals of the Spaces Lp() (1 {600} p <+)
  • Chapter 21. Radon Measures. Distributions
  • Radon Measures in an Open Subset of Rn
  • Distributions in an Open Subset of Rn
  • Chapter 22. More Duals: Polynomials and Formal Power Series. Analytic Functionals
  • Polynomials and Formal Power Series
  • Analytic Functionals in an Open Subset of Cn
  • Chapter 23. Transpose of a Continuous Linear Map
  • Example I. Injections of Duals.
  • Example II. Restrictions and Extensions
  • Example III. Differential Operators
  • Chapter 24. Support and Structure of a Distribution
  • Distributions with Support at the Origin
  • Chapter 25. Example of Transpose: Fourier Transformation of Tempered Distributions
  • Chapter 26. Convolution of Functions
  • Chapter 27. Example of Transpose: Convolution of Distributions
  • Chapter 28. Approximation of Distributions by Cutting and Regularizing
  • Chapter 29. Fourier Transforms of Distributions with Compact Support The Paley-Wiener Theorem.