|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn476219725 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn|---||||| |
008 |
091207s2006 vtu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d ZCU
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d MERUC
|d U3W
|d OCLCO
|d OCLCF
|d ICG
|d INT
|d OCLCQ
|d DKC
|d OCLCQ
|d HS0
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 507310995
|
020 |
|
|
|a 9780080535937
|q (electronic bk.)
|
020 |
|
|
|a 0080535933
|q (electronic bk.)
|
020 |
|
|
|a 9788131203767
|
020 |
|
|
|a 813120376X
|q (Trade Cloth)
|
029 |
1 |
|
|a AU@
|b 000048789981
|
029 |
1 |
|
|a AU@
|b 000051563145
|
029 |
1 |
|
|a DEBBG
|b BV044131433
|
029 |
1 |
|
|a DEBSZ
|b 43069377X
|
035 |
|
|
|a (OCoLC)476219725
|z (OCoLC)507310995
|
037 |
|
|
|b 00991439
|
050 |
|
4 |
|a QA76.63 .H58 2006
|
082 |
0 |
4 |
|a 005.1/15
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Sinha, S. M.
|
245 |
1 |
0 |
|a Mathematical Programming :
|b Theory and Methods.
|
260 |
|
|
|a Burlington :
|b Elsevier,
|c 2006.
|
300 |
|
|
|a 1 online resource (589 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. This self-contained book is an overview of mathematical programming from its origins. It is suitable both as a text and as a reference.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Mathematical Programming: Theory and Methods; Copyright Page; Contents; Chapter 1. Introduction; 1.1 Background and Historical Sketch; 1.2. Linear Programming; 1.3. Illustrative Examples; 1.4. Graphical Solutions; 1.5. Nonlinear Programming; PART 1: MATHEMATICAL FOUNDATIONS; Chapter 2. Basic Theory of Sets and Functions; 2.1. Sets; 2.2. Vectors; 2.3. Topological Properties of Rn; 2.4. Sequences and Subsequences; 2.5. Mappings and Functions; 2.6. Continuous Functions; 2.7. Infimum and Supremum of Functions; 2.8. Minima and Maxima of Functions; 2.9. Differentiable Functions
|
505 |
8 |
|
|a Chapter 3. Vector Spaces3.1. Fields; 3.2. Vector Spaces; 3.3. Subspaces; 3.4. Linear Dependence; 3.5. Basis and Dimension; 3.6. Inner Product Spaces; Chapter 4. Matrices and Determinants; 4.1. Matrices; 4.2. Relations and Operations; 4.3. Partitioning of Matrices; 4.4. Rank of a Matrix; 4.5. Determinants; 4.6. Properties of Determinants; 4.7. Minors and Cofactors; 4.8. Determinants and Rank; 4.9. The Inverse Matrix; Chapter 5. Linear Transformations and Rank; 5.1. Linear Transformations and Rank; 5.2. Product of Linear Transformations; 5.3. Elementary Transformations
|
505 |
8 |
|
|a 5.4. Echelon Matrices and RankChapter 6. Quadratic Forms and Eigenvalue Problems; 6.1. Quadratic Forms; 6.2. Definite Quadratic Forms; 6.3. Characteristic Vectors and Characteristic Values; Chapter 7. Systems of Linear Equations and Linear Inequalities; 7.1. Linear Equations; 7.2. Existence Theorems for Systems of Linear Equations; 7.3. Basic Solutions and Degeneracy; 7.4. Theorems of the Alternative; Chapter 8. Convex Sets and Convex Cones; 8.1. Introduction and Preliminary Definitions; 8.2. Convex Sets and their Properties; 8.3. Convex Hulls; 8.4. Separation and Support of Convex Sets
|
505 |
8 |
|
|a 8.5. Convex Polytopes and Polyhedra8.6. Convex Cones; Chapter 9. Convex and Concave Functions; 9.1. Definitions and Basic Properties; 9.2. Differentiable Convex Functions; 9.3. Generalization of Convex Functions; 9.4. Exercises; PART 2: LINEAR PROGRAMMING; Chapter 10. Linear Programming Problems; 10.1. The General Problem; 10.2. Equivalent Formulations; 10.3. Definitions and Terminologies; 10.4. Basic Solutions of Linear Programs; 10.5. Fundamental Properties of Linear Programs; 10.6. Exercises; Chapter 11. Simplex Method: Theory and Computation; 11.1. Introduction
|
505 |
8 |
|
|a 11.2. Theory of the Simplex Method11.3. Method of Computation: The Simplex Algorithm; 11.4. The Simplex Tableau; 11.5. Replacement Operation; 11.6. Example; 11.7. Exercises; Chapter 12. Simplex Method: Initial Basic Feasible Solution; 12.1. Introduction: Artificial Variable Techniques; 12.2. The Two-Phase Method [117]; 12.3. Examples; 12.4. The Method of Penalties [71]; 12.5. Examples: Penalty Method; 12.6. Inconsistency and Redundancy; 12.7. Exercises; Chapter 13. Degeneracy in Linear Programming; 13.1. Introduction; 13.2. Charnes' Perturbation Method; 13.3. Example; 13.4. Exercises
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Programming (Mathematics)
|
650 |
|
2 |
|a Mathematics
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
6 |
|a Programmation (Mathématiques)
|
650 |
|
7 |
|a Mathematics
|2 fast
|
650 |
|
7 |
|a Programming (Mathematics)
|2 fast
|
776 |
1 |
|
|z 9788131203767
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=404733
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL404733
|
994 |
|
|
|a 92
|b IZTAP
|