Cargando…

Mathematical Programming : Theory and Methods.

Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. This self-contained book is an overview of mathematical programming from its origins. It is suitable both as a text and as a reference.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sinha, S. M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier, 2006.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn476219725
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 091207s2006 vtu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d ZCU  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d HS0  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 507310995 
020 |a 9780080535937  |q (electronic bk.) 
020 |a 0080535933  |q (electronic bk.) 
020 |a 9788131203767 
020 |a 813120376X  |q (Trade Cloth) 
029 1 |a AU@  |b 000048789981 
029 1 |a AU@  |b 000051563145 
029 1 |a DEBBG  |b BV044131433 
029 1 |a DEBSZ  |b 43069377X 
035 |a (OCoLC)476219725  |z (OCoLC)507310995 
037 |b 00991439 
050 4 |a QA76.63 .H58 2006 
082 0 4 |a 005.1/15 
049 |a UAMI 
100 1 |a Sinha, S. M. 
245 1 0 |a Mathematical Programming :  |b Theory and Methods. 
260 |a Burlington :  |b Elsevier,  |c 2006. 
300 |a 1 online resource (589 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. This self-contained book is an overview of mathematical programming from its origins. It is suitable both as a text and as a reference. 
588 0 |a Print version record. 
505 0 |a Front Cover; Mathematical Programming: Theory and Methods; Copyright Page; Contents; Chapter 1. Introduction; 1.1 Background and Historical Sketch; 1.2. Linear Programming; 1.3. Illustrative Examples; 1.4. Graphical Solutions; 1.5. Nonlinear Programming; PART 1: MATHEMATICAL FOUNDATIONS; Chapter 2. Basic Theory of Sets and Functions; 2.1. Sets; 2.2. Vectors; 2.3. Topological Properties of Rn; 2.4. Sequences and Subsequences; 2.5. Mappings and Functions; 2.6. Continuous Functions; 2.7. Infimum and Supremum of Functions; 2.8. Minima and Maxima of Functions; 2.9. Differentiable Functions 
505 8 |a Chapter 3. Vector Spaces3.1. Fields; 3.2. Vector Spaces; 3.3. Subspaces; 3.4. Linear Dependence; 3.5. Basis and Dimension; 3.6. Inner Product Spaces; Chapter 4. Matrices and Determinants; 4.1. Matrices; 4.2. Relations and Operations; 4.3. Partitioning of Matrices; 4.4. Rank of a Matrix; 4.5. Determinants; 4.6. Properties of Determinants; 4.7. Minors and Cofactors; 4.8. Determinants and Rank; 4.9. The Inverse Matrix; Chapter 5. Linear Transformations and Rank; 5.1. Linear Transformations and Rank; 5.2. Product of Linear Transformations; 5.3. Elementary Transformations 
505 8 |a 5.4. Echelon Matrices and RankChapter 6. Quadratic Forms and Eigenvalue Problems; 6.1. Quadratic Forms; 6.2. Definite Quadratic Forms; 6.3. Characteristic Vectors and Characteristic Values; Chapter 7. Systems of Linear Equations and Linear Inequalities; 7.1. Linear Equations; 7.2. Existence Theorems for Systems of Linear Equations; 7.3. Basic Solutions and Degeneracy; 7.4. Theorems of the Alternative; Chapter 8. Convex Sets and Convex Cones; 8.1. Introduction and Preliminary Definitions; 8.2. Convex Sets and their Properties; 8.3. Convex Hulls; 8.4. Separation and Support of Convex Sets 
505 8 |a 8.5. Convex Polytopes and Polyhedra8.6. Convex Cones; Chapter 9. Convex and Concave Functions; 9.1. Definitions and Basic Properties; 9.2. Differentiable Convex Functions; 9.3. Generalization of Convex Functions; 9.4. Exercises; PART 2: LINEAR PROGRAMMING; Chapter 10. Linear Programming Problems; 10.1. The General Problem; 10.2. Equivalent Formulations; 10.3. Definitions and Terminologies; 10.4. Basic Solutions of Linear Programs; 10.5. Fundamental Properties of Linear Programs; 10.6. Exercises; Chapter 11. Simplex Method: Theory and Computation; 11.1. Introduction 
505 8 |a 11.2. Theory of the Simplex Method11.3. Method of Computation: The Simplex Algorithm; 11.4. The Simplex Tableau; 11.5. Replacement Operation; 11.6. Example; 11.7. Exercises; Chapter 12. Simplex Method: Initial Basic Feasible Solution; 12.1. Introduction: Artificial Variable Techniques; 12.2. The Two-Phase Method [117]; 12.3. Examples; 12.4. The Method of Penalties [71]; 12.5. Examples: Penalty Method; 12.6. Inconsistency and Redundancy; 12.7. Exercises; Chapter 13. Degeneracy in Linear Programming; 13.1. Introduction; 13.2. Charnes' Perturbation Method; 13.3. Example; 13.4. Exercises 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematics. 
650 0 |a Programming (Mathematics) 
650 2 |a Mathematics 
650 6 |a Mathématiques. 
650 6 |a Programmation (Mathématiques) 
650 7 |a Mathematics  |2 fast 
650 7 |a Programming (Mathematics)  |2 fast 
776 1 |z 9788131203767 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=404733  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL404733 
994 |a 92  |b IZTAP