Cargando…

Theory of Uniform Approximation of Functions by Polynomials.

A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dzyadyk, Vladislav K.
Otros Autores: Shevchuk, Igor A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Walter de Gruyter, 2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn476197368
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 091207s2008 gw ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d IDEBK  |d CN3GA  |d AUW  |d OCLCF  |d DEBSZ  |d OCLCQ  |d OCLCO  |d YDXCP  |d CDX  |d DKDLA  |d NKT  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d PIFPO  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d DEGRU  |d U3W  |d CUY  |d STF  |d WRM  |d OCLCQ  |d NRAMU  |d ICG  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d BRF  |d OCLCO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCL 
019 |a 457130318  |a 851640378 
020 |a 9783110208245  |q (electronic bk.) 
020 |a 3110208245  |q (electronic bk.) 
020 |a 9783110201475 
020 |a 311020147X 
029 1 |a AU@  |b 000055719727 
029 1 |a CDX  |b 10729035 
029 1 |a DEBBG  |b BV044130856 
029 1 |a DEBSZ  |b 396201121 
035 |a (OCoLC)476197368  |z (OCoLC)457130318  |z (OCoLC)851640378 
037 |a 219698  |b MIL 
050 4 |a QA221.D99 2008 
082 0 4 |a 511.326 
049 |a UAMI 
100 1 |a Dzyadyk, Vladislav K. 
245 1 0 |a Theory of Uniform Approximation of Functions by Polynomials. 
260 |a Berlin :  |b Walter de Gruyter,  |c 2008. 
300 |a 1 online resource (496 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions. 
588 0 |a Print version record. 
505 0 |a Chebyshev theory and its development -- Weierstrass theorems -- On smoothness of functions -- Extension -- Direct theorems on the approximation of periodic functions -- Inverse theorems on the approximation of periodic functions -- Approximation by polynomials. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 6 |a Théorie de l'approximation. 
650 6 |a Analyse fonctionnelle. 
650 7 |a MATHEMATICS / Calculus.  |2 bisacsh 
650 7 |a Approximation theory  |2 fast 
650 7 |a Functional analysis  |2 fast 
653 |a Alternation Set. 
653 |a Best Approximation. 
653 |a Polynomial. 
653 |a Uniform Approximation. 
700 1 |a Shevchuk, Igor A. 
758 |i has work:  |a Theory of uniform approximation of functions by polynomials (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGRt8TQ6Jx6GrMkCjkXFBq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9783110201475 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=364731  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25308208 
938 |a Coutts Information Services  |b COUT  |n 10729035 
938 |a De Gruyter  |b DEGR  |n 9783110208245 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL364731 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 219698 
938 |a YBP Library Services  |b YANK  |n 2896796 
994 |a 92  |b IZTAP