|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn476100205 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn|---||||| |
008 |
091207s2007 si o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d NRU
|d OCLCQ
|d IDEBK
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCF
|d OCLCQ
|d ZCU
|d OCLCQ
|d MERUC
|d ICG
|d OCLCQ
|d WYU
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 815542607
|
020 |
|
|
|a 9781860948657
|q (electronic bk.)
|
020 |
|
|
|a 1860948650
|q (electronic bk.)
|
020 |
|
|
|a 1281120715
|
020 |
|
|
|a 9781281120717
|
029 |
1 |
|
|a AU@
|b 000048753480
|
029 |
1 |
|
|a DEBBG
|b BV044126895
|
029 |
1 |
|
|a DEBSZ
|b 379305798
|
035 |
|
|
|a (OCoLC)476100205
|z (OCoLC)815542607
|
050 |
|
4 |
|a QA613 .S86 2003eb
|
072 |
|
7 |
|a PBMW
|2 bicssc
|
082 |
0 |
4 |
|a 516.35
|a 516.36
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a De Cataldo, Mark Andrea.
|
245 |
1 |
4 |
|a The Hodge Theory Of Projective Manifolds.
|
260 |
|
|
|a Singapore :
|b World Scientific,
|c 2007.
|
300 |
|
|
|a 1 online resource (113 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a This book is a written-up and expanded version of eight lectures on the Hodge theory of projective manifolds. It assumes very little background and aims at describing how the theory becomes progressively richer and more beautiful as one specializes from Riemannian, to Khler, to complex projective manifolds. Though the proof of the Hodge Theorem is omitted, its consequences topological, geometrical and algebraic are discussed at some length. The special properties of complex projective manifolds constitute an important body of knowledge and readers are guided through it with the help of se.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Contents; 1. Calculus on smooth manifolds; 2. The Hodge theory of a smooth, oriented, compact Riemannian manifold; 3. Complex manifolds; 4. Hermitean linear algebra; 5. The Hodge theory of Hermitean manifolds; 6. K ahler manifolds; 7. The Hard Lefschetz Theorem and the Hodge-Riemann Bilinear Relations; 8. Mixed Hodge structures, semi-simplicity and approximability; Bibliography; Index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Manifolds (Mathematics)
|
650 |
|
6 |
|a Variétés (Mathématiques)
|
650 |
|
7 |
|a Manifolds (Mathematics)
|2 fast
|
758 |
|
|
|i has work:
|a The Hodge theory of projective manifolds (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGfVRTkF49GTyMJm976GDy
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
1 |
|
|z 9781860948008
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=312399
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL312399
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 112071
|
994 |
|
|
|a 92
|b IZTAP
|