Viability, Invariance and Applications.
The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Burlington :
Elsevier,
2007.
|
Colección: | North-Holland Mathematics Studies, v. 207.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Viability, Invariance and Applications; Copyright Page; Table of Contents; Preface; Chapter 1. Generalities; 1.1 Basic facts on Banach spaces; 1.2 The Bochner integral and Lp spaces; 1.3 Compactness theorems; 1.4 C0-semigroups; 1.5 Mild solutions; 1.6 Evolutions governed by m-dissipative operators; 1.7 Examples of m-dissipative operators; 1.8 Differential and integral inequalities; Chapter 2. Specific preliminary results; 2.1 Brezis-Browder Ordering Principle; 2.2 Projections; 2.3 Tangent sets; 2.4 Bouligand-Severi tangent vectors; 2.5 Other types of tangent vectors.