Cargando…

Spectral Analysis Of Differential Operators : Interplay Between Spectral And Oscillatory Properties.

This is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Rofe-Beketov, Fedor S.
Otros Autores: Kholkin, Aleksandr M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2005.
Colección:World Scientific monograph series in mathematics ; v. 7.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn476064524
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 091207s2005 si ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d U3W  |d STF  |d OCLCO  |d COCUF  |d ICG  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 748531087  |a 815747092 
020 |a 9789812703453  |q (electronic bk.) 
020 |a 9812703454  |q (electronic bk.) 
020 |a 1281905828 
020 |a 9781281905826 
020 |a 9812562761 
020 |a 9789812562760 
020 |z 9812562761 
024 3 |a 9789812562760 
029 1 |a AU@  |b 000048758428 
029 1 |a DEBBG  |b BV044124765 
029 1 |a DEBSZ  |b 379302608 
029 1 |a DEBSZ  |b 445563222 
035 |a (OCoLC)476064524  |z (OCoLC)748531087  |z (OCoLC)815747092 
037 |b 00041155 
050 4 |a QC20.7.S64 R64 2005eb  |a QC20.7.S64R64 2005 
072 7 |a PBKJ  |2 bicssc 
082 0 4 |a 515.3  |a 515/.7222 
049 |a UAMI 
100 1 |a Rofe-Beketov, Fedor S. 
245 1 0 |a Spectral Analysis Of Differential Operators :  |b Interplay Between Spectral And Oscillatory Properties. 
260 |a Singapore :  |b World Scientific,  |c 2005. 
300 |a 1 online resource (463 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific monograph series in mathematics ;  |v v. 7 
520 |a This is the first monograph devoted to the Sturm oscillatory theory for infinite systems of differential equations and its relations with the spectral theory. It aims to study a theory of self-adjoint problems for such systems, based on an elegant method of binary relations. Another topic investigated in the book is the behavior of discrete eigenvalues which appear in spectral gaps of the Hill operator and almost periodic Schrdinger operators due to local perturbations of the potential (e.g., modeling impurities in crystals). The book is based on results that have not been presented in other. 
588 0 |a Print version record. 
505 0 |a Cover -- Contents -- Foreword -- Preface -- Acknowledgments -- Introduction -- 1. Relation Between Spectral and Oscillatory Properties for the Matrix Sturm-Liouville Problem -- 1.1 Problem on a Finite Interval -- 1.2 Problem on the Half-Line -- 1.3 Bibliographical Comments -- 1.3.1 An Example of the Operator of (1.1)(1.3) Type with the Purely Absolutely Continuous Spectrum -- 1.3.2 Oscillatory Theory of Partial Differential Equations -- 1.3.3 Bochner Integral -- 2. Fundamental System of Solutions for an Operator Differential Equation with a Singular Boundary Condition -- 2.1 Separated Self-Adjoint Boundary Conditions -- 2.2 A Construction for the Fundamental Solution of the Boundary-Value Problem -- 2.3 Self-consistency of the Fundamental Solution of the Self- Adjoint Problem and the Evolution of the Corresponding Hermitian Relation (or Lagrangian Plane in H @ H) -- 2.4 A Different Construction for the Fundamental Solution of the Boundary-Value Problem -- 2.5 Bibliographical Comments -- 3. Dependence of the Spectrum of Operator Boundary Problems on Variations of a Finite or Semi-Infinite Interval -- 3.1 Dependence of Eigenvalues and the Greatest Lower Bound of the Spectrum for a Semi-Bounded Below Differential Operator on Variations of the Interval -- 3.2 Continuity and Monotonicity of the Greatest Lower Bound of the Essential Spectrum for Semi-Bounded Below Differential Operators -- 3.3 Bibliographical Comments -- 4. Relation Between Spectral and Oscillatory Properties for Operator Differential Equations of Arbitrary Order -- 4.1 Oscillatory Theorem for Operator Differential Equations of Even Order -- 4.2 Comparison and Alternation Theorems -- 4.3 Multiplicative Representation of Positive Differential Operators and Its Applications -- 4.4 Discrete Levels in the Gaps of the Essential Spectrum -- 4.5 Bibliographical Comments -- 4.5.1 Symplectic Interpretation of Sturm-Type Theorems and Their Operator-Theoretical Proofs -- 5. Self-Adjoint Extensions of Systems of Differential Equations of Arbitrary Order on an Infinite Interval in the Absolutely Indefinite Case -- 5.1 A Description of Self-Adjoint Extensions of Differential Operators of Arbitrary Order with Operator-Valued Coefficients on an Infinite Interval -- 5.2 Parametrization of the Characteristic Operator Function -- 5.3 Bibliographical Comments -- 5.3.1 Everitt-Zettl Problem, Brusentsevs Example and Two Open Questions -- 5.3.2 On the Deficiency Indices of Scalar Symmetric Dif- ferential Operators of General Kind on the Half-Axis (Solved and Unsolved Questions) -- 5.3.3 Kogan-Rofe-Beketovs Asymptotic Theorems and Deficiency Indices of Symmetric Differential Operator -- 5.3.4 R.C. Gilberts Class of Formally Self-Adjoint Ordi- nary Differential Operators Whose Deficiency Numbers Differ by an Arbitrary Pre-Assigned Positive Integer -- 5.3.5 Deficiency Indices of Symmetric Differential Systems of the First and Arbitrary Orders and Some Open Questions -- 5.3.6 Some Comments on Hilberts 21-st Problem and Bolibrukh Counterexample -- 5.3.7 Some Comments on Section 5.2 -- 5.3.8 Characteristic Properties of Weyl Solutions for the Sturm-Liouville and Dirac Equations. V.A. Marchenkos Theorems -- 6. Discrete Levels in Spectral Gaps of Perturbed Schrodinger and Hill Operators -- 6.1 Factorized Phase Matrix of the Perturbed System and the Discrete Spectrum in Gaps of the Continuous Spectrum -- 6.2 Generalization of D Alembert-Liouville-Ostrogradsky For- mula and Its Application to Growth Estimates for Solutions of Canonical Almost Periodic Systems -- T$19058. 
504 |a Includes bibliographical references (pages 359-429) and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Differential operators. 
650 0 |a Hilbert space. 
650 0 |a Operator theory. 
650 0 |a Selfadjoint operators. 
650 0 |a Spectral theory (Mathematics) 
650 6 |a Opérateurs différentiels. 
650 6 |a Espace de Hilbert. 
650 6 |a Théorie des opérateurs. 
650 6 |a Opérateurs auto-adjoints. 
650 6 |a Spectre (Mathématiques) 
650 7 |a Differential operators  |2 fast 
650 7 |a Hilbert space  |2 fast 
650 7 |a Operator theory  |2 fast 
650 7 |a Selfadjoint operators  |2 fast 
650 7 |a Spectral theory (Mathematics)  |2 fast 
700 1 |a Kholkin, Aleksandr M. 
758 |i has work:  |a Spectral analysis of differential operators (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3w9wyGF3vgJpPHQw7jY8y  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9789812562760 
830 0 |a World Scientific monograph series in mathematics ;  |v v. 7. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=296249  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL296249 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 190582 
994 |a 92  |b IZTAP