|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn476063675 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn|---||||| |
008 |
091207s2004 si o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d IDEBK
|d OCLCA
|d OCLCQ
|d OCLCF
|d OCLCQ
|d ZCU
|d OCLCQ
|d MERUC
|d ICG
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 815741967
|
020 |
|
|
|a 9781860947261
|q (electronic bk.)
|
020 |
|
|
|a 1860947263
|q (electronic bk.)
|
020 |
|
|
|a 1281866814
|
020 |
|
|
|a 9781281866813
|
029 |
1 |
|
|a AU@
|b 000055715099
|
029 |
1 |
|
|a DEBBG
|b BV044124671
|
029 |
1 |
|
|a DEBSZ
|b 37930192X
|
035 |
|
|
|a (OCoLC)476063675
|z (OCoLC)815741967
|
050 |
|
4 |
|a QA274.23 .B384 2004eb
|a QA274.23.B384 2004
|
072 |
|
7 |
|a PBWL
|2 bicssc
|
082 |
0 |
4 |
|a 519.2
|a 519.23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Baudoin, Fabrice.
|
245 |
1 |
3 |
|a An Introduction To The Geometry Of Stochastic Flows.
|
260 |
|
|
|a Singapore :
|b World Scientific,
|c 2004.
|
300 |
|
|
|a 1 online resource (152 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a This book aims to provide a self-contained introduction to the local geometry of the stochastic flows. It studies the hypoelliptic operators, which are written in Hrmanders form, by using the connection between stochastic flows and partial differential equations. The book stresses the authors view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry, and its main tools are introduced throughou.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface; Contents; Chapter 1 Formal Stochastic Differential Equations; Chapter 2 Stochastic Differential Equations and Carnot Groups; Chapter 3 Hypoelliptic Flows; Appendix A Basic Stochastic Calculus; Appendix B Vector Fields, Lie Groups and Lie Algebras; Bibliography; Index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Differential equations, Nonlinear.
|
650 |
|
0 |
|a Geometry.
|
650 |
|
0 |
|a Stochastic differential equations.
|
650 |
|
0 |
|a Stochastic geometry.
|
650 |
|
6 |
|a Équations différentielles non linéaires.
|
650 |
|
6 |
|a Géométrie.
|
650 |
|
6 |
|a Équations différentielles stochastiques.
|
650 |
|
6 |
|a Géométrie stochastique.
|
650 |
|
7 |
|a geometry.
|2 aat
|
650 |
|
7 |
|a Differential equations, Nonlinear
|2 fast
|
650 |
|
7 |
|a Geometry
|2 fast
|
650 |
|
7 |
|a Stochastic differential equations
|2 fast
|
650 |
|
7 |
|a Stochastic geometry
|2 fast
|
758 |
|
|
|i has work:
|a An introduction to the geometry of stochastic flows (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGccTkfgT3tbrVC6BbVQYK
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
1 |
|
|z 9781860944819
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=296148
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL296148
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 186681
|
994 |
|
|
|a 92
|b IZTAP
|