Cargando…

An Introduction To The Geometry Of Stochastic Flows.

This book aims to provide a self-contained introduction to the local geometry of the stochastic flows. It studies the hypoelliptic operators, which are written in Hrmanders form, by using the connection between stochastic flows and partial differential equations. The book stresses the authors view t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Baudoin, Fabrice
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2004.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn476063675
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 091207s2004 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d IDEBK  |d OCLCA  |d OCLCQ  |d OCLCF  |d OCLCQ  |d ZCU  |d OCLCQ  |d MERUC  |d ICG  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 815741967 
020 |a 9781860947261  |q (electronic bk.) 
020 |a 1860947263  |q (electronic bk.) 
020 |a 1281866814 
020 |a 9781281866813 
029 1 |a AU@  |b 000055715099 
029 1 |a DEBBG  |b BV044124671 
029 1 |a DEBSZ  |b 37930192X 
035 |a (OCoLC)476063675  |z (OCoLC)815741967 
050 4 |a QA274.23 .B384 2004eb  |a QA274.23.B384 2004 
072 7 |a PBWL  |2 bicssc 
082 0 4 |a 519.2  |a 519.23 
049 |a UAMI 
100 1 |a Baudoin, Fabrice. 
245 1 3 |a An Introduction To The Geometry Of Stochastic Flows. 
260 |a Singapore :  |b World Scientific,  |c 2004. 
300 |a 1 online resource (152 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a This book aims to provide a self-contained introduction to the local geometry of the stochastic flows. It studies the hypoelliptic operators, which are written in Hrmanders form, by using the connection between stochastic flows and partial differential equations. The book stresses the authors view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry, and its main tools are introduced throughou. 
588 0 |a Print version record. 
505 0 |a Preface; Contents; Chapter 1 Formal Stochastic Differential Equations; Chapter 2 Stochastic Differential Equations and Carnot Groups; Chapter 3 Hypoelliptic Flows; Appendix A Basic Stochastic Calculus; Appendix B Vector Fields, Lie Groups and Lie Algebras; Bibliography; Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Geometry. 
650 0 |a Stochastic differential equations. 
650 0 |a Stochastic geometry. 
650 6 |a Équations différentielles non linéaires. 
650 6 |a Géométrie. 
650 6 |a Équations différentielles stochastiques. 
650 6 |a Géométrie stochastique. 
650 7 |a geometry.  |2 aat 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Geometry  |2 fast 
650 7 |a Stochastic differential equations  |2 fast 
650 7 |a Stochastic geometry  |2 fast 
758 |i has work:  |a An introduction to the geometry of stochastic flows (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGccTkfgT3tbrVC6BbVQYK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9781860944819 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=296148  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL296148 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 186681 
994 |a 92  |b IZTAP