Cargando…

The Dissimilarity Representation For Pattern Recognition : Foundations And Applications.

This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pekalska, Elzbieta
Otros Autores: Duin, Robert P. W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2005.
Colección:Series in machine perception and artificial intelligence ; v. 64.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn476063399
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 091207s2005 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d DEBSZ  |d I9W  |d OCLCQ  |d ZCU  |d MERUC  |d U3W  |d OCLCO  |d OCLCF  |d OCLCQ  |d ICG  |d AU@  |d OCLCO  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 840312130 
020 |a 9789812703170  |q (electronic bk.) 
020 |a 9812703179  |q (electronic bk.) 
020 |z 9812565302 
020 |z 9789812565303 
029 1 |a AU@  |b 000058361118 
029 1 |a DEBBG  |b BV044124635 
029 1 |a DEBSZ  |b 43040249X 
035 |a (OCoLC)476063399  |z (OCoLC)840312130 
050 4 |a TA1634 .P45 2005eb  |a TK7882.P3 P45 2005eb 
082 0 4 |a 006.4 
049 |a UAMI 
100 1 |a Pekalska, Elzbieta. 
245 1 4 |a The Dissimilarity Representation For Pattern Recognition :  |b Foundations And Applications. 
260 |a Singapore :  |b World Scientific,  |c 2005. 
300 |a 1 online resource (634 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 64 
520 |a This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition. Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and in. 
588 0 |a Print version record. 
505 0 |a 1. Introduction. 1.1. Recognizing the pattern. 1.2. Dissimilarities for representation. 1.3. Learning from examples. 1.4. Motivation of the use of dissimilarity representations. 1.5. Relation to kernels. 1.6. Outline of the book. 1.7. In summary -- 2. Spaces. 2.1. Preliminaries. 2.2. A brief look at spaces. 2.3. Generalized topological spaces. 2.4. Generalized metric spaces. 2.5. Vector spaces. 2.6. Normed and inner product spaces. 2.7. Indefinite inner product spaces. 2.8. Discussion -- 3. Characterization of dissimilarities. 3.1. Embeddings, tree models and transformations. 3.2. Tree models for dissimilarities. 3.3. Useful transformations. 3.4. Properties of dissimilarity matrices. 3.5. Linear embeddings of dissimilarities. 3.6. Spatial representation of dissimilarities. 3.7. Summary -- 4. Learning approaches. 4.1. Traditional learning. 4.2. The role of dissimilarity representations. 4.3. Classification in generalized topological spaces. 4.4. Classification in dissimilarity spaces. 4.5. Classification in pseudo-Euclidean spaces. 4.6. On generalized kernels and dissimilarity spaces. 4.7. Discussion -- 5. Dissimilarity measures. 5.1. Measures depending on feature types. 5.2. Measures between populations. 5.3. Dissimilarity measures between sequences. 5.4. Information-theoretic measures. 5.5. Dissimilarity measures between sets. 5.6. Dissimilarity measures in applications. 5.7. Discussion and conclusions -- 6. Visualization. 6.1. Multidimensional scaling. 6.2. Other mappings. 6.3. Examples : getting insight into the data. 6.4. Tree models. 6.5. Summary -- 7. Flirther data exploration. 7.1. Clustering. 7.2. Intrinsic dimension. 7.3. Sampling density. 7.4. Summary -- 8. One-class classifiers. 8.1. General issues. 8.2. Domain descriptors for dissimilarity representations. 8.3. Experiments. 8.4. Conclusions -- 9. Classification. 9.1. Proof of principle. 9.2. Selection of the representation set : the dissimilarity space approach. 9.3. Selection of the representation set : the embedding approach. 9.4. On corrections of dissimilarity measures. 9.5. A few remarks on a simulated missing value problem. 9.6. Existence of zero-error dissimilarity-based classifiers. 9.7. Final discussion -- 10. Combining. 10.1. Combining for one-class classification. 10.2. Combining for standard two-class classification. 10.3. Classifier projection space. 10.4. Summary -- 11. Representation review and recommendations. 11.1. Representation review. 11.2. Practical considerations -- 12. Conclusions and open problems. 12.1. Summary and contributions. 12.2. Extensions of dissimilarity representations. 12.3. Open questions. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Pattern perception. 
650 0 |a Pattern recognition systems. 
650 2 |a Pattern Recognition, Automated 
650 6 |a Perception des structures. 
650 6 |a Reconnaissance des formes (Informatique) 
650 7 |a Pattern perception  |2 fast 
650 7 |a Pattern recognition systems  |2 fast 
700 1 |a Duin, Robert P. W. 
776 1 |z 9789812565303 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 64. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=296110  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL296110 
994 |a 92  |b IZTAP