Set theory and its logic /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, Mass. :
Belknap Press of Harvard University Press,
1969.
|
Edición: | Rev. ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- PREFACE TO THE REVISED EDITION
- PREFACE TO THE FIRST EDITION
- CONTENTS
- INTRODUCTION
- Part One. The Elements
- I. LOGIC
- 1. Quantification and identity
- 2. Virtual classes
- 3. Virtual relations
- II. REAL CLASSES
- 4. Reality, extensionality, and the individual
- 5. The virtual amid the real
- 6. Identity and substitution
- III. CLASSES OF CLASSES
- 7. Unit classes
- 8. Unions, intersections, descriptions
- 9. Relations as classes of pairs
- 10. Functions
- IV. NATURAL NUMBERS
- 11. Numbers unconstrued
- 12. Numbers construed13. Induction
- V. ITERATION AND ARITHMETIC
- 14. Sequences and iterates
- 15. The ancestral
- 16. Sum, product, power
- Part Two. Higher Forms of Number
- VI. REAL NUMBERS
- 17. Program. Numerical pairs
- 18. Ratios and reaIs construed
- 19. Existential needs. Operations and extensions
- VII. ORDER AND ORDINALS
- 20. Transfinite induction
- 21. Order
- 22. Ordinal numbers
- 23. Laws of ordinals
- 24. The order of the ordinals
- VIII. TRANSFINITE RECURSION
- 25. Transfinite recursion
- 26. Laws of transfinite recursion27. Enumeration
- IX. CARDINAL NUMBERS
- 28. Comparative size of classes
- 29. The SchrÃœder-Bernstein theorem
- 30. Infinite cardinal numbers
- X. THE AXIOM OF CHOICE
- 31. Selections and selectors
- 32. Further equivalents of the axiom
- 33. The place of the axiom
- Part Three. Axiom Systems
- XI. RUSSELL�S THEORY OF TYPES
- 34. The constructive part
- 35. Classes and the axiom of reducibility
- 36. The modern theory of types
- XII. GENERAL VARIABLES AND ZERMELO
- 37. The theory of types with general variables38. Cumulative types and Zermelo
- 39. Axioms of infinity and others
- XIII. STRATIFICATION AND ULTIMATE CLASSES
- 40. “New foundations�
- 41. Non-Cantorian classes. Induction again
- 42. Ultimate classes added
- XIV. VON NEUMANN�S SYSTEM AND OTHERS
- 43. The von Neumann�Bernays system
- 44. Departures and comparisons
- 45. Strength of systems
- SYNOPSIS OF FIVE AXIOM SYSTEMS
- LIST OF NUMBERED FORMULAS
- BIBLIOGRAPHICAL REFERENCES
- INDEX