Cargando…

Knots.

An introduction to classical knot theory. Topics covered include: different constructions of knots; knot diagrams; knot groups; fibred knots and branched coverings and knots. This edition has been revised to include the Jones and homfly polynomials and the Vassiliev invariants.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Burde, Gerhard, 1931-
Otros Autores: Zieschang, Heiner
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Walter de Gruyter, 2002.
Colección:De Gruyter studies in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn437191145
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|---|||||
008 090817s2002 gw o 000 0 eng d
040 |a MERUC  |b eng  |e pn  |c MERUC  |d YDXCP  |d OCLCQ  |d OCLCO  |d DEBBG  |d OCLCQ  |d EBLCP  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCQ  |d UMR  |d DKC  |d OCLCQ  |d UWK  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 183147491  |a 935264350 
020 |a 9783110198034  |q (electronic bk.) 
020 |a 3110198037  |q (electronic bk.) 
029 1 |a DEBBG  |b BV042346816 
029 1 |a DEBBG  |b BV044127044 
029 1 |a AU@  |b 000055642909 
035 |a (OCoLC)437191145  |z (OCoLC)183147491  |z (OCoLC)935264350 
050 4 |a QA612.2 
082 0 4 |a 514.224  |a 514/.224 
049 |a UAMI 
100 1 |a Burde, Gerhard,  |d 1931-  |1 https://id.oclc.org/worldcat/entity/E39PBJqbmkvCFXbYpc4BRGhj4q 
245 1 0 |a Knots. 
260 |a Berlin :  |b Walter de Gruyter,  |c 2002. 
300 |a 1 online resource (572 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Studies in Mathematics 
505 0 |a de Gruyter Studies in Mathematics; Preface to the First Edition; Preface to the Second Edition; Contents; Chapter 1Knots and Isotopies; Chapter 2Geometric Concepts; Chapter 3Knot Groups; Chapter 4Commutator Subgroup of a Knot Group; Chapter 5Fibred Knots; Chapter 6A Characterization of Torus Knots; Chapter 7Factorization of Knots; Chapter 8Cyclic Coverings and Alexander Invariants; Chapter 9Free Differential Calculus and Alexander Matrices; Chapter 10Braids; Chapter 11Manifolds as Branched Coverings; Chapter 12Montesinos Links; Chapter 13Quadratic Forms of a Knot. 
505 8 |a Chapter 14Representations of Knot GroupsChapter 15Knots, Knot Manifolds, and Knot Groups; Chapter 16The 2-variable skein polynomial; Appendix AAlgebraic Theorems; Appendix BTheorems of 3-dimensional Topology; Appendix CTables; Appendix DKnot Projections 01-949; Bibliography; List of Authors According to Codes; Author Index; Subject Index. 
520 |a An introduction to classical knot theory. Topics covered include: different constructions of knots; knot diagrams; knot groups; fibred knots and branched coverings and knots. This edition has been revised to include the Jones and homfly polynomials and the Vassiliev invariants. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Knot theory. 
650 4 |a Knot theory. 
650 6 |a Théorie des nœuds. 
650 7 |a Knot theory  |2 fast 
700 1 |a Zieschang, Heiner. 
776 1 |z 9783110170054 
830 0 |a De Gruyter studies in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=314066  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL314066 
938 |a YBP Library Services  |b YANK  |n 2740744 
994 |a 92  |b IZTAP