A Kalman Filter Primer.
Eubank (mathematics and statistics, Arizona State U.) offers a self-contained, concise rigorous derivation of all the basic Kalman filter recursions from first principles. He lays out the basic prediction problem for signal-plus-noise models, deriving the Gramm-Schmidt algorithm and Cholesky decompo...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
CRC Press,
2005.
|
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Eubank (mathematics and statistics, Arizona State U.) offers a self-contained, concise rigorous derivation of all the basic Kalman filter recursions from first principles. He lays out the basic prediction problem for signal-plus-noise models, deriving the Gramm-Schmidt algorithm and Cholesky decomposition. He covers the fundamental covariance struc. |
---|---|
Descripción Física: | 1 online resource (199 pages) |
ISBN: | 9781420028676 1420028677 |