|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn430195936 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
090812s2009 nyua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d E7B
|d OCLCF
|d NLGGC
|d OCLCQ
|d EBLCP
|d OCLCQ
|d AZK
|d MERUC
|d AGLDB
|d MOR
|d PIFAG
|d ZCU
|d OCLCQ
|d U3W
|d STF
|d WRM
|d VTS
|d NRAMU
|d ICG
|d INT
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d UKCRE
|d M8D
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 961602529
|a 962655524
|a 988438937
|a 991927407
|a 1037937713
|a 1038703384
|a 1038703783
|a 1045504002
|a 1153483079
|
020 |
|
|
|a 9781607419082
|q (electronic bk.)
|
020 |
|
|
|a 1607419084
|q (electronic bk.)
|
020 |
|
|
|z 9781604560688
|
029 |
1 |
|
|a AU@
|b 000053300224
|
029 |
1 |
|
|a DEBBG
|b BV043127740
|
029 |
1 |
|
|a DEBBG
|b BV044087520
|
029 |
1 |
|
|a DEBSZ
|b 421978058
|
029 |
1 |
|
|a NZ1
|b 15345613
|
035 |
|
|
|a (OCoLC)430195936
|z (OCoLC)961602529
|z (OCoLC)962655524
|z (OCoLC)988438937
|z (OCoLC)991927407
|z (OCoLC)1037937713
|z (OCoLC)1038703384
|z (OCoLC)1038703783
|z (OCoLC)1045504002
|z (OCoLC)1153483079
|
050 |
|
4 |
|a QC174.17.P27
|b B679 2009eb
|
072 |
|
7 |
|a SCI
|x 067000
|2 bisacsh
|
082 |
0 |
4 |
|a 530.14/3
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Botelho, Luiz C. L.
|
245 |
1 |
0 |
|a Methods of bosonic and fermionic path integrals representations :
|b continuum random geometry in quantum field theory /
|c Luiz C.L. Botelho.
|
260 |
|
|
|a Hauppauge, N.Y. :
|b Nova Science Publishers,
|c ©2009.
|
300 |
|
|
|a 1 online resource (xiii, 336 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a METHODS OF BOSONIC AND FERMIONIC PATH INTEGRALS REPRESENTATIONS: CONTINUUM RANDOM GEOMETRY IN QUANTUM FIELD THEORY; Contents; About This Monograph (ForewordI); Loop Space Path Integrals Representations for Euclidean Quantum Fields Path Integrals and the Covariant Path Integral; 1.1. Introduction; 1.2. The Bosonic Loop Space Formulation of the O(N)-Scalar Field Theory; 1.3. A Fermionic Loop Space for QCD; 1.4. Invariant Path Integration and the Covariant Functional Measure for Einstein Gravitation Theory; References; Appendix A.; Appendix B.; Appendix C.; Appendix D.; Appendix E.
|
505 |
8 |
|
|a Path Integrals Evaluations in Bosonic Random Loop Geometry-Abelian Wilson Loops2.1. Introduction; 2.2. Abelian Wilson Loop Interaction at Finite Temperature; 2.3. The Static Confining Potential for Q.C.D. in the Mandel-stam Model through Path Integrals; Path-Integrals on Quantum Magnetic Monopoles; References; The Triviality-Quantum Decoherence of Quantum Chromodynamics SU() in the Presence of an External Strong White-Noise Eletromagnetic Field; 3.1. Introduction; 3.2. The Triviality-Quantum Decoherence Analysis; 3.3. Random Surface Dynamical Factor in the Analytical Regularization Scheme.
|
505 |
8 |
|
|a 3.4. The Non-relativistic Case3.5. The Static Confining Potential in a Tensor Axion Model; 3.6. The Confining Potential on the Axion-String Model in the Axion Higher-Energy Region; 3.7.A nz4 String Field Theory as a Dynamics of Self Avoiding Random Surfaces; Appendix A.; Appendix B.; References; The Confining Behaviour and Asymptotic Freedom for QCD(SU())- A Constant Gauge Field Path Integral Analysis; 4.1. Introduction; 4.2. The Model and Its Confining Behavior; 4.3. The Path-Integral Triviality Argument for the Thirring Model at SU().
|
505 |
8 |
|
|a 4.4. The Loop Space Argument for the Thirring Model TrivialityReferences; Triviality-Quantum Decoherence of Fermionic Quantum Chromodynamics SU(Nc) in the Presence of an External Strong U() Flavored Constant noise Field; 5.1. Introduction; 5.2. The Triviality-Quantum Decoherence Analysis for Quantum Chromodynamics; Appendix A.; Appendix B.; References; Fermions on the Lattice by Means of Mandelstam-Wilson Phase Factors: A Bosonic Lattice Path-Integral Framework; 6.1. Introduction; 6.2. The Framework; References.
|
505 |
8 |
|
|a A Connection between Fermionic Strings and Quantum Gravity States-A Loop Space Approach7.1. Introduction; 7.2. The Loop Space Approach for Quantum Gravity; 7.3. The Wheeler-De Witt Geometrodynamical Propagator; 7.4. A nz4 Geometrodynamical Field Theory for Quantum Gravity; Appendix A; References; A Fermionic Loop Wave Equation for Quantum Chromodynamics at Nc=+ ; 8.1. Introduction; 8.2. The Fermionic Loop Wave Equation; References; String Wave Equations in Polyakov's Path Integral Framework; 9.1. Introduction; 9.2. The Wave Equation in Covariant Particle Dynamics.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Path integrals.
|
650 |
|
0 |
|a Integral representations.
|
650 |
|
6 |
|a Intégrales de chemin.
|
650 |
|
6 |
|a Représentations intégrales.
|
650 |
|
7 |
|a SCIENCE
|x Waves & Wave Mechanics.
|2 bisacsh
|
650 |
|
7 |
|a Integral representations
|2 fast
|
650 |
|
7 |
|a Path integrals
|2 fast
|
758 |
|
|
|i has work:
|a Methods of bosonic and fermionic path integrals representations (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFBt9MJ89fYtkq8VhkdKbb
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Botelho, Luiz C.L.
|t Methods of bosonic and fermionic path integrals representations.
|d Hauppauge, N.Y. : Nova Science Publishers, ©2009
|z 9781604560688
|z 1604560681
|w (DLC) 2007042443
|w (OCoLC)174138943
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3018325
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3018325
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 281222
|
994 |
|
|
|a 92
|b IZTAP
|