Cargando…

Machine learning in bioinformatics /

Machine learning techniques such as Markov models, support vector machines, neural networks, graphical models, etc., have been successful in analyzing life science data because of their capabilities of handling randomness and uncertainties of data and noise and in generalization. This book compiles...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Zhang, Yan-Qing, Rajapakse, Jagath Chandana
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley, ©2009.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn352745595
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 090527s2009 njua ob 001 0 eng d
040 |a DG1  |b eng  |e pn  |c DG1  |d BTCTA  |d YDXCP  |d CDX  |d N$T  |d IDEBK  |d E7B  |d DG1  |d OCLCQ  |d FVL  |d OCLCQ  |d DEBSZ  |d DKDLA  |d OCLCQ  |d NLGGC  |d OCLCO  |d MERUC  |d EBLCP  |d UKDOC  |d OCLCQ  |d OCLCF  |d COO  |d OCLCQ  |d AZK  |d DG1  |d LOA  |d OCLCO  |d OCLCA  |d IAS  |d OCLCO  |d OCLCQ  |d COCUF  |d DG1  |d CNNOR  |d CHVBK  |d OCLCO  |d OCLCQ  |d MOR  |d LIP  |d OCLCO  |d PIFAG  |d ZCU  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCA  |d U3W  |d OCLCA  |d OCLCQ  |d BRL  |d OCLCO  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCO  |d OCLCQ  |d OCLCA  |d WYU  |d G3B  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d A6Q  |d DKC  |d OCLCQ  |d OCLCA  |d UKCRE  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBA869554  |2 bnb 
016 7 |a 014622349  |2 Uk 
019 |a 294881574  |a 317754322  |a 321074329  |a 437111276  |a 476269616  |a 647764601  |a 748588268  |a 961547491  |a 962614657  |a 966221491  |a 988507807  |a 992111468  |a 1037529268  |a 1037907279  |a 1038691104  |a 1045554835  |a 1055386802  |a 1066560328  |a 1081253517  |a 1083607439  |a 1153559271  |a 1228584591 
020 |a 9780470397428 
020 |a 047039742X 
020 |a 0470397411  |q (electronic bk.) 
020 |a 9780470397411  |q (electronic bk.) 
020 |z 0470116625  |q (Cloth) 
020 |z 9780470116623  |q (cloth) 
024 7 |a 10.1002/9780470397428  |2 doi 
029 1 |a AU@  |b 000053263340 
029 1 |a AU@  |b 000061126847 
029 1 |a CDX  |b 9819617 
029 1 |a CHBIS  |b 010879875 
029 1 |a CHNEW  |b 000933446 
029 1 |a CHVBK  |b 480137900 
029 1 |a DEBBG  |b BV044134599 
029 1 |a DEBSZ  |b 372691811 
029 1 |a DEBSZ  |b 396246133 
029 1 |a DEBSZ  |b 430720610 
029 1 |a NZ1  |b 14241478 
035 |a (OCoLC)352745595  |z (OCoLC)294881574  |z (OCoLC)317754322  |z (OCoLC)321074329  |z (OCoLC)437111276  |z (OCoLC)476269616  |z (OCoLC)647764601  |z (OCoLC)748588268  |z (OCoLC)961547491  |z (OCoLC)962614657  |z (OCoLC)966221491  |z (OCoLC)988507807  |z (OCoLC)992111468  |z (OCoLC)1037529268  |z (OCoLC)1037907279  |z (OCoLC)1038691104  |z (OCoLC)1045554835  |z (OCoLC)1055386802  |z (OCoLC)1066560328  |z (OCoLC)1081253517  |z (OCoLC)1083607439  |z (OCoLC)1153559271  |z (OCoLC)1228584591 
037 |a 10.1002/9780470397428  |b Wiley InterScience  |n http://www3.interscience.wiley.com 
050 4 |a QH324.2  |b .M33 2009 
060 4 |a QU 26.5  |b M149 2009 
072 7 |a COM  |x 082000  |2 bisacsh 
082 0 4 |a 572.80285/61  |2 22 
049 |a UAMI 
245 0 0 |a Machine learning in bioinformatics /  |c edited by Yan-Qing Zhang, Jagath C. Rajapakse. 
260 |a Hoboken, N.J. :  |b Wiley,  |c ©2009. 
300 |a 1 online resource (xviii, 456 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 0 |t Feature selection for genomic and proteomic data mining /  |r Sun-Yuan Kung and Man-Wai Mak --  |t Comparing and visualizing gene selection and classification methods for microarray data /  |r Rajiv S. Menjoge and Roy E. Welsch --  |t Adaptive kernel classifiers via matrix decomposition updating for biological data analysis /  |r Hyunsoo Kim and Haesun Park --  |t Bootstrapping consistency method for optimal gene selection from microarray gene expression data for classification problems /  |r Shaoning Pang [and others] --  |t Fuzzy gene mining : a fuzzy-based framework for cancer microarray data analysis /  |r Zhenyu Wang and Vasile Palade --  |t Feature selection for ensemble learning and its application /  |r Guo-Zheng Li and Jack Y. Yang --  |t Sequence-based prediction of residue-level properties in proteins /  |r Shandar Ahmad [and others] --  |t Consensus approaches to protein structure prediction /  |r Dongbo Bu [and others] --  |t Kernel methods in protein structure prediction /  |r Jayavardhana Gubbi, Alistair Shilton, and Marimuthu Palaniswami --  |t Evolutionary granular kernel trees for protein subcellular location prediction /  |r Bo Jin and Yan-Qing Zhang --  |t Probabilistic models for long-range features in biosequences /  |r Li Liao --  |t Neighborhood profile search for motif refinement /  |r Chandan K. Reddy, Yao-Chung Weng, and Hsiao-Dong Chiang --  |t Markov/neural model for eukaryotic promoter recognition /  |r Jagath C. Rajapakse and Sy Loi Ho --  |t Eukaryotic promoter detection based on word and sequence feature selection and combination /  |r Xudong Xie, Shuanhu Wu, and Hong Yan --  |t Feature characterization and testing of bidirectional promoters in the human genome -- significance and applications in human genome research /  |r Mary Q. Yang, David C. King, and Laura L. Elnitski --  |t Supervised learning methods for the microRNA studies /  |r Byoung-Tak Zhang and Jin-Wu Nam --  |t Machine learning for computational haplotype analysis /  |r Phil H. Lee and Hagit Shatkay --  |t Machine learning applications in SNP -- disease association study /  |r Pritam Chanda, Aidong Zhang, and Murali Ramanathan -- Nanopore cheminformatics-based studies of individual molecular interactions /  |r Stephen Winters-Hilt --  |t Information fusion framework for biomedical informatics /  |r Srivatsava R. Ganta [and others]. 
520 |a Machine learning techniques such as Markov models, support vector machines, neural networks, graphical models, etc., have been successful in analyzing life science data because of their capabilities of handling randomness and uncertainties of data and noise and in generalization. This book compiles recent approaches in machine learning, showing promise in addressing different complex bioinformatics applications from prominent researchers in the field. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bioinformatics. 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 2 |a Artificial Intelligence 
650 2 |a Computational Biology 
650 2 |a Medical Informatics 
650 2 |a Machine Learning 
650 6 |a Bio-informatique. 
650 6 |a Apprentissage automatique. 
650 6 |a Intelligence artificielle. 
650 6 |a Médecine  |x Informatique. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a COMPUTERS  |x Bioinformatics.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Bioinformatics  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Zhang, Yan-Qing. 
700 1 |a Rajapakse, Jagath Chandana. 
758 |i has work:  |a Machine learning in bioinformatics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFChtkRdTGJJVkk7JQT8RX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Machine learning in bioinformatics.  |d Hoboken, N.J. : Wiley, ©2009  |z 9780470116623  |z 0470116625  |w (DLC) 2008017095  |w (OCoLC)176898859 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=427638  |z Texto completo 
938 |a 123Library  |b 123L  |n 9926 
938 |a Baker and Taylor  |b BTCP  |n BK0008119117 
938 |a Coutts Information Services  |b COUT  |n 9819617 
938 |a EBL - Ebook Library  |b EBLB  |n EBL427638 
938 |a ebrary  |b EBRY  |n ebr10296669 
938 |a EBSCOhost  |b EBSC  |n 270767 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 203070 
938 |a YBP Library Services  |b YANK  |n 3016839 
938 |a YBP Library Services  |b YANK  |n 2998816 
994 |a 92  |b IZTAP