Cargando…

Numerical solution of variational inequalities by adaptive finite elements /

Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Suttmeier, Franz-Theo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiesbaden : Vieweg+Teubner Research, ©2008.
Edición:1st ed.
Colección:Wiley-Teubner series, advances in numerical mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn325000443
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 090518s2008 gw a ob 000 0 eng d
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OSU  |d OCLCQ  |d EBLCP  |d OCLCQ  |d OCLCF  |d DKDLA  |d OCLCQ  |d NUI  |d E7B  |d SLY  |d COO  |d YDXCP  |d DEBSZ  |d IDEBK  |d OCLCQ  |d GKJ  |d OCLCQ  |d AZK  |d LOA  |d VT2  |d Z5A  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d COCUF  |d MERUC  |d ESU  |d OCLCQ  |d STF  |d U3W  |d WRM  |d OCLCQ  |d NRAMU  |d INT  |d OCLCQ  |d WYU  |d CANPU  |d TKN  |d LEAUB  |d DKC  |d OCLCQ  |d CNTRU  |d AUD  |d ERF  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL  |d OCLCQ 
019 |a 495284468  |a 646806269  |a 698470118  |a 880314792  |a 961520873  |a 962714247  |a 966197328  |a 985048485  |a 988428626  |a 992027892  |a 994815487  |a 1005747491  |a 1007580641  |a 1035699053  |a 1037745759  |a 1038667897  |a 1045446519  |a 1055336299  |a 1060671344  |a 1061014110  |a 1078836061  |a 1081202712  |a 1086926363  |a 1097282633  |a 1105592092  |a 1112554861 
020 |a 9783834895462 
020 |a 3834895466 
020 |a 3834806641  |q (pbk.) 
020 |a 9783834806642  |q (pbk.) 
024 8 |a 9786612038358 
024 7 |a 10.1007/978-3-8348-9546-2.  |2 doi 
029 1 |a AU@  |b 000048657462 
029 1 |a AU@  |b 000053025012 
029 1 |a AU@  |b 000060546381 
029 1 |a DEBBG  |b BV044157139 
029 1 |a DEBSZ  |b 431028559 
029 1 |a NLGGC  |b 382165284 
029 1 |a NZ1  |b 13101812 
029 1 |a NZ1  |b 15195609 
029 1 |a DKDLA  |b 820120-katalog:999896947905765 
035 |a (OCoLC)325000443  |z (OCoLC)495284468  |z (OCoLC)646806269  |z (OCoLC)698470118  |z (OCoLC)880314792  |z (OCoLC)961520873  |z (OCoLC)962714247  |z (OCoLC)966197328  |z (OCoLC)985048485  |z (OCoLC)988428626  |z (OCoLC)992027892  |z (OCoLC)994815487  |z (OCoLC)1005747491  |z (OCoLC)1007580641  |z (OCoLC)1035699053  |z (OCoLC)1037745759  |z (OCoLC)1038667897  |z (OCoLC)1045446519  |z (OCoLC)1055336299  |z (OCoLC)1060671344  |z (OCoLC)1061014110  |z (OCoLC)1078836061  |z (OCoLC)1081202712  |z (OCoLC)1086926363  |z (OCoLC)1097282633  |z (OCoLC)1105592092  |z (OCoLC)1112554861 
037 |a 978-3-8348-0664-2  |b Springer  |n http://www.springerlink.com 
050 4 |a QC20.7.F56  |b S88 2008 
072 7 |a PBKS.  |2 bicssc 
072 7 |a MAT021000.  |2 bisacsh 
072 7 |a MAT006000.  |2 bisacsh 
082 0 4 |a 518/.25  |2 22 
084 |a O241. 82  |2 clc 
049 |a UAMI 
100 1 |a Suttmeier, Franz-Theo. 
245 1 0 |a Numerical solution of variational inequalities by adaptive finite elements /  |c Franz-Theo Suttmeier. 
250 |a 1st ed. 
260 |a Wiesbaden :  |b Vieweg+Teubner Research,  |c ©2008. 
300 |a 1 online resource (x, 161 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Advances in numerical mathematics 
521 |a Students and researchers from the field of numerical mathematics, and users of adaptive finite element techniques. 
504 |a Includes bibliographical references (pages 155-161). 
588 0 |a Print version record. 
520 8 |a Franz-Theo Suttmeier describes a general approach to a posteriori error estimation and adaptive mesh design for finite element models where the solution is subjected to inequality constraints. This is an extension to variational inequalities of the so-called Dual-Weighted-Residual method (DWR method) which is based on a variational formulation of the problem and uses global duality arguments for deriving weighted a posteriori error estimates with respect to arbitrary functionals of the error. In these estimates local residuals of the computed solution are multiplied by sensitivity factors which are obtained from a numerically computed dual solution. The resulting local error indicators are used in a feed-back process for generating economical meshes which are tailored according to the particular goal of the computation. This method is developed here for several model problems. Based on these examples, a general concept is proposed, which provides a systematic way of adaptive error control for problems stated in form of variational inequalities. 
505 0 |a Models in elasto-plasticity -- The dual-weighted-residual method -- Extensions to stabilised schemes -- Obstacle problem -- Signorini's problem -- Strang's problem -- General concept -- Lagrangian formalism -- Obstacle problem revisited -- Variational inequalities of second kind -- Time-dependent problems -- Applications -- Iterative Algorithms -- Conclusion. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Finite element method. 
650 0 |a Variational inequalities (Mathematics) 
650 0 |a Error analysis (Mathematics) 
650 0 |a Differential equations, Partial  |x Numerical solutions. 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Mathematics, general. 
650 6 |a Méthode des éléments finis. 
650 6 |a Inégalités variationnelles. 
650 6 |a Théorie des erreurs. 
650 6 |a Équations aux dérivées partielles  |x Solutions numériques. 
650 0 7 |a Variational inequalities (Mathematics)  |2 cct 
650 0 7 |a Error analysis (Mathematics)  |2 cct 
650 0 7 |a Differential equations, Partial  |x Numerical solutions.  |2 cct 
650 0 7 |a Finite element method.  |2 cct 
650 7 |a Método de elementos finitos  |2 embne 
650 0 7 |a Análisis de errores (Matemáticas)  |2 embucm 
650 0 7 |a Desigualdades variacionales (Matemáticas)  |2 embucm 
650 7 |a Differential equations, Partial  |x Numerical solutions  |2 fast 
650 7 |a Error analysis (Mathematics)  |2 fast 
650 7 |a Finite element method  |2 fast 
650 7 |a Variational inequalities (Mathematics)  |2 fast 
758 |i has work:  |a Numerical solution of variational inequalities by adaptive finite elements (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGW7DWJQ6HDTMwGM4JHWtC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Suttmeier, Franz-Theo.  |t Numerical solution of variational inequalities by adaptive finite elements.  |b 1st ed.  |d Wiesbaden : Vieweg+Teubner Research, ©2008  |z 9783834806642  |z 3834806641  |w (OCoLC)297287361 
830 0 |a Wiley-Teubner series, advances in numerical mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=751836  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL751836 
938 |a ebrary  |b EBRY  |n ebr10284698 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis23677571 
938 |a YBP Library Services  |b YANK  |n 3075359 
994 |a 92  |b IZTAP