Data mining and warehousing /
Data Mining is the process of analyzing large amount of data in search of previously undiscovered business patterns. Data Warehousing is a relational/multidimensional database that is designed for Query and Analysis rather than Transaction Processing. This book provides a systematic introduction to...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New Delhi :
New Age International,
©2007.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover13;
- Copyright
- Dedication
- Preface
- Acknowledgement
- Contents
- Chapter 1 Data Mining and Warehousing Concepts
- 1.1 Introduction13;
- 1.2 Data Mining Definitions13;
- 1.3 Data Mining Tools13;
- 1.4 Applications of Data Mining13;
- 1.5 Data Warehousing and Characteristics13;
- 1.6 Data Warehouse Architecture13;
- Exercise13;
- Chapter 2 Learning and Types of Knowledge
- 2.1 Introduction13;
- 2.2 What is Learning?13;
- 2.3 Anatomy of Data Mining13;
- 2.4 Different Types of Knowledge13;
- Exercise13;
- Chapter 3 Knowledge Discovery Process
- 3.1 Introduction13;
- 3.2 Evaluation of Data Mining13;
- 3.3 Stages of the Data Mining Process13;
- 3.4 Data Mining Operations13;
- 3.5 Architecture of Data Mining13;
- Exercise13;
- Chapter 4 Data Mining Techniques
- 4.1 Introduction13;
- 4.2 Classification13;
- 4.3 Neural Networks13;
- 4.4 Decision Trees13;
- 4.5 Genetic Algorithm13;
- 4.6 Clustering13;
- 4.7 Online Analytic Processing (OLAP)13;
- 4.8 Association Rules13;
- 4.9 Emerging Trends in Data Mining13;
- 4.10 Data Mining Research Projects13;
- Exercise13;
- Chapter 5 Real Time Applications and Future Scope
- 5.1 Applications of Data Mining13;
- 5.2 Future Scope13;
- 5.3 Data Mining Products13;
- Exercise13;
- Chapter 6 Data Warehouse Evaluation
- 6.1 The Calculations for Memory Capacity13;
- 6.2 Data, Information and Knowledge13;
- 6.3 Fundamental of Database13;
- 6.4 OLAP And OLAP Server13;
- 6.5 Data Warehouses, OLTP, OLAP and Data Mining13;
- Exercise13;
- Chapter 7 Data Warehouse Design
- 7.1 Introduction13;
- 7.2 The Central Data Warehouse13;
- 7.3 Data Warehousing Objects13;
- 7.4 Goals of Data Warehouse Architecture13;
- 7.5 Data Warehouse Users13;
- 7.6 Design the Relational Database and OLAP Cubes13;
- 7.7 Data Warehousing Schemas13;
- Exercise13;
- Chapter 8 Partitioning in Data Warehouse
- 8.1 Introduction13;
- 8.2 Hardware Partitioning13;
- 8.3 RAID Levels13;
- 8.4 Software Partitioning Methods13;
- Exercise13;
- Chapter 9 Data Mart and Meta Data
- 9.1 Introduction13;
- 9.2 Data Mart13;
- 9.3 Meta Data13;
- 9.4 Legacy Systems13;
- Exercise13;
- Chapter 10 Backup and Recovery of the Data Warehouse
- 10.1 Introduction13;
- 10.2 Types of Backup13;
- 10.3 Backup the Data Warehouse13;
- 10.4 Data Warehouse Recovery Models13;
- Exercise13;
- Chapter 11 Performance Tuning and Future of data Warehouse
- 11.1 Introduction13;
- 11.2 Prioritized Tuning Steps13;
- 11.3 Challenges of the Data Warehouse13;
- 11.4 Benefits of Data Warehousing13;
- 11.5 Future of the Data Warehouse13;
- 11.6 New Architecture of Data Warehouse13;
- Exercise13;
- Appendix A Glossary
- Appendix B Multiple Choice Questions13;
- Appendix C Questions & Answers13;
- Appendix D Model Question Papers13;
- Bibliography
- Index.