Cargando…

Finite element analysis /

With the authors experience of teaching the courses on Finite Element Analysis to undergraduate and postgraduate students for several years, the author felt need for writing this book. The concept of finite element analysis, finding properties of various elements and assembling stiffness equation is...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bhavikatti, S. S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New Delhi : New Age International (P) Ltd., Publishers, ©2005.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover13;
  • Copyright
  • Preface
  • Acknowledgement
  • Contents
  • Chapter 1 Introduction
  • 1.1 General13;
  • 1.2 General Description of the Method13;
  • 1.3 A Brief Explanation of FEA for a Stress Analysis Problem13;
  • 1.4 Finite Element Method vs Classical Methods13;
  • 1.5 FEM vs FDM13;
  • 1.6 A Brief History of FEM13;
  • 1.7 Need for Studying FEM13;
  • 1.8 Warning to FEA Package Users13;
  • Questions13;
  • References13;
  • Chapter 2 Basic Equations in Elasticity
  • 2.1 Introduction13;
  • 2.2 Stresses in a Typical Element 13;
  • 2.3 Equations of Equilibrium13;
  • 2.4 Strains13;
  • 2.5 Strain Displacement Equations13;
  • 2.6 Linear Constitutive Law
  • Questions13;
  • Chapter 3 Matrix Displacement Formulation
  • 3.1 Introduction13;
  • 3.2 Matrix Displacement Equations13;
  • 3.3 Solution of Matrix Displacement Equations13;
  • 3.4 Techniques of Saving Computer Memory Requirements13;
  • Questions13;
  • Chapter 4 Element Shapes, Nodes, Nodal Unknowns and Coordinate Systems
  • 4.1 Introduction13;
  • 4.2 Element Shapes13;
  • 4.3 Nodes13;
  • 4.4 Nodal Unknowns13;
  • 4.5 Coordinate Systems13;
  • Questions13;
  • Chapter 5 Shape Functions
  • 5.1 Introduction13;
  • 5.2 Polynomial Shape Functions13;
  • 5.3 Convergence Requirements of Shape Functions13;
  • 5.4 Derivation of Shape Functions Using Polynomials13;
  • 5.5 Finding Shape Functions Using Lagrange Polynomials13;
  • 5.6 Shape Functions for Serendipity Family Elements13;
  • 5.7 Hermite Polynomials as Shape Functions 13;
  • 5.8 Construction of Shape Functions by Degrading Technique13;
  • Questions13;
  • Chapter 6 Strain Displacement Matrix
  • 6.1 Introduction13;
  • 6.2 Strain-Displacement Matrix for Bar Elements13;
  • 6.3 Strain Displacement Matrix for CST Element13;
  • 6.4 Strain Displacement Matrix for a Beam Element13;
  • Questions13;
  • Chapter 7 Assembling Stiffness Equations-Direct Approach
  • 7.1 Introduction13;
  • 7.2 Element Stiffness Matrix for CST Element by Direct Approach13;
  • 7.3 Nodal Loads by Direct Approach13;
  • Questions13;
  • Chapter 8 Assembling Stiffness Equations-Galerkin's Method, Virtual Work Method
  • 8.1 Introduction13;
  • 8.2 Galerkin's Method13;
  • 8.3 Galerkin's Method Applied to Elasticity Problems13;
  • Questions13;
  • Chapter 9 Assembling Stiffness Equations-Variational Method
  • 9.1 Introduction13;
  • 9.2 General Variational Method in Elasticity Problems13;
  • 9.3 Potential Energy in Elastic Bodies13;
  • 9.4 Principle of Minimum Potential Energy13;
  • 9.5 The Rayleigh-Ritz Method13;
  • 9.6 Variational Formulation in Finite Element Analysis13;
  • Questions13;
  • Chapter 10 Discretization of Structures
  • 10.1 Introduction13;
  • 10.2 Nodes at Discontinuities13;
  • 10.3 Refining Mesh13;
  • 10.4 Use of Symmetry13;
  • 10.5 Finite Representation of Infinite Bodies 13;
  • 10.6 Element Aspect Ratio13;
  • 10.7 Higher Order Elements vs Refined Mesh13;
  • 10.8 Numbering System to Reduce Band Width13;
  • Questions13;
  • Chapter 11 Finite Element Analysis-Bars and Trusses
  • 11.1 Introduction13;
  • 11.2 Tension Bars/Columns13;
  • 11.3 Two Dimensional Trusses (Plane Trusses)13;
  • 11.4 Three Dimensional Truss.