Cargando…

Gradient flows : in metric spaces and in the space of probability measures /

This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It consists of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the space of probabilit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ambrosio, Luigi
Otros Autores: Gigli, Nicola, Savaré, Giuseppe
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel ; Boston : Birkhäuser, ©2008.
Edición:2nd ed.
Colección:Lectures in mathematics ETH Zürich.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn304564764
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 090213s2008 sz a ob 001 0 eng d
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OCLCQ  |d MYPMP  |d EBLCP  |d OCLCO  |d N$T  |d YDXCP  |d MERUC  |d UAB  |d E7B  |d IDEBK  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d VT2  |d SLY  |d OCLCQ  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d ESU  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d CEF  |d NRAMU  |d CRU  |d INT  |d OCLCQ  |d WYU  |d ICG  |d CANPU  |d OCLCQ  |d DKC  |d OCLCQ  |d CNTRU  |d UKAHL  |d OCLCQ  |d SFB  |d AUD  |d DCT  |d LQU  |d UKBTH  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 407604398  |a 441825285  |a 646038121  |a 858880514  |a 880315706  |a 961547703  |a 962603750  |a 988449612  |a 991918696  |a 994809542  |a 1035668429  |a 1037903834  |a 1038665363  |a 1044252141  |a 1056338821  |a 1060663775  |a 1061029075  |a 1069503113  |a 1077239757  |a 1087030284  |a 1103255306  |a 1126476620  |a 1135574646 
020 |a 9783764387228 
020 |a 376438722X 
020 |a 9783764387211  |q (paper) 
020 |a 3764387211  |q (paper) 
020 |a 1281851361 
020 |a 9781281851369 
020 |a 9786611851361 
020 |a 6611851364 
020 |a 9783764398088  |q (print) 
020 |a 3764398086 
024 7 |a 10.1007/978-3-7643-8722-8  |2 doi 
024 8 |a 10.1007/978-3-7643-8 
029 1 |a AU@  |b 000048703597 
029 1 |a AU@  |b 000053016742 
029 1 |a AU@  |b 000060546323 
029 1 |a DEBBG  |b BV044133406 
029 1 |a DEBSZ  |b 396234534 
029 1 |a DKDLA  |b 820120-katalog:000663069 
029 1 |a DKDLA  |b 820120-katalog:999906345205765 
029 1 |a HEBIS  |b 217330967 
029 1 |a NZ1  |b 13084667 
029 1 |a NZ1  |b 13708247 
035 |a (OCoLC)304564764  |z (OCoLC)407604398  |z (OCoLC)441825285  |z (OCoLC)646038121  |z (OCoLC)858880514  |z (OCoLC)880315706  |z (OCoLC)961547703  |z (OCoLC)962603750  |z (OCoLC)988449612  |z (OCoLC)991918696  |z (OCoLC)994809542  |z (OCoLC)1035668429  |z (OCoLC)1037903834  |z (OCoLC)1038665363  |z (OCoLC)1044252141  |z (OCoLC)1056338821  |z (OCoLC)1060663775  |z (OCoLC)1061029075  |z (OCoLC)1069503113  |z (OCoLC)1077239757  |z (OCoLC)1087030284  |z (OCoLC)1103255306  |z (OCoLC)1126476620  |z (OCoLC)1135574646 
037 |a 978-3-7643-8721-1  |b Springer  |n http://www.springerlink.com 
050 4 |a QA312  |b .A58 2008eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a PBKL  |2 bicssc 
072 7 |a PBK  |2 thema 
082 0 4 |a 515/.42  |2 22 
084 |a O174. 12  |2 clc 
049 |a UAMI 
100 1 |a Ambrosio, Luigi. 
245 1 0 |a Gradient flows :  |b in metric spaces and in the space of probability measures /  |c Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré. 
250 |a 2nd ed. 
260 |a Basel ;  |a Boston :  |b Birkhäuser,  |c ©2008. 
300 |a 1 online resource (vii, 334 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Lectures in mathematics ETH Zürich 
504 |a Includes bibliographical references (pages 321-331) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction -- Part I. Gradient flow in metric spaces -- 2. Curves and gradients in metric spaces -- 3. Existence of curves of maximal slope -- 4. Proofs of the convergence theorems -- 5. Generation of contraction semigroups -- Part II. Gradient flow in the Wasserstein spaces of probability measures -- 6. Preliminary results on measure theory -- 7. The optimal transportation problem -- 8. The Wasserstein distance and its behaviour along geodesics -- 9. A.c. curves and the continuity equation -- 10. Convex functionals -- 11. Metric slope and subdifferential calculus -- 12. Gradient flows and curves of maximal slope -- 13. Appendix -- Bibliography. 
520 |a This book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It consists of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance. The two parts have some connections, due to the fact that the space of probability measures provides an important model to which the "metric" theory applies, but the book is conceived in such a way that the two parts can be read independently, the first one by the reader more interested in non-smooth analysis and analysis in metric spaces, and the second one by the reader more orientated towards the applications in partial differential equations, measure theory and probability 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Measure theory. 
650 0 |a Metric spaces. 
650 0 |a Differential equations, Partial. 
650 0 |a Monotone operators. 
650 0 |a Evolution equations, Nonlinear. 
650 6 |a Théorie de la mesure. 
650 6 |a Espaces métriques. 
650 6 |a Équations aux dérivées partielles. 
650 6 |a Opérateurs monotones. 
650 6 |a Équations d'évolution non linéaires. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 0 7 |a Differential equations, Partial.  |2 cct 
650 0 7 |a Monotone operators.  |2 cct 
650 0 7 |a Evolution equations, Nonlinear.  |2 cct 
650 0 7 |a Measure theory.  |2 cct 
650 0 7 |a Metric spaces.  |2 cct 
650 7 |a Ecuaciones en derivadas parciales  |2 embne 
650 7 |a Espacios métricos  |2 embne 
650 7 |a Teoría de la medida  |2 embne 
650 0 7 |a Ecuaciones de evolución no lineales  |2 embucm 
650 0 7 |a Operadores monótonos  |2 embucm 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Evolution equations, Nonlinear  |2 fast 
650 7 |a Measure theory  |2 fast 
650 7 |a Metric spaces  |2 fast 
650 7 |a Monotone operators  |2 fast 
700 1 |a Gigli, Nicola. 
700 1 |a Savaré, Giuseppe. 
758 |i has work:  |a Gradient flows (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH8tJPrbcFGtPPcXHdQhh3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Ambrosio, Luigi.  |t Gradient flows.  |b 2nd ed.  |d Basel ; Boston : Birkhäuser, ©2008  |z 9783764387211  |z 3764387211  |w (OCoLC)212432128 
830 0 |a Lectures in mathematics ETH Zürich. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=417466  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26420285 
938 |a EBL - Ebook Library  |b EBLB  |n EBL417466 
938 |a ebrary  |b EBRY  |n ebr10257963 
938 |a EBSCOhost  |b EBSC  |n 262266 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 185136 
938 |a YBP Library Services  |b YANK  |n 2954102 
994 |a 92  |b IZTAP