Cargando…

Mathematics emerging : a sourcebook 1540-1900 /

This book examines the development of mathematics from the late 16th Century to the end of the 19th Century. Each chapter will focus on a particular topic and outline its history with the provision of facsimiles of primary source material along with explanatory notes and modern interpretations. - ;A...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stedall, Jacqueline A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; New York : Oxford University Press, 2008.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn302000765
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 090206s2008 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d CDX  |d OSU  |d YDXCP  |d N$T  |d IDEBK  |d E7B  |d OCLCQ  |d MHW  |d OCLCQ  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d DEBSZ  |d OCLCQ  |d AZK  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d UUM  |d STF  |d WRM  |d VNS  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d DKC  |d OCLCQ  |d UHL  |d UKCRE  |d VLY  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
015 |a GBA759542  |2 bnb 
016 7 |z 013805300  |2 Uk 
019 |a 300701808  |a 316145963  |a 437093874  |a 646792611  |a 815751765  |a 961546343  |a 962599638  |a 988509945  |a 991963205  |a 1037909473  |a 1038655558  |a 1045498844  |a 1055357858  |a 1063812116  |a 1113800409  |a 1153532097  |a 1162248035  |a 1241748083  |a 1290062763  |a 1300606922 
020 |a 0199226903 
020 |a 9780199226900 
020 |a 0191527718  |q (ebook) 
020 |a 9780191527715  |q (ebook) 
020 |a 9780191527715  |q (electronic bk.) 
020 |a 1281930725 
020 |a 9781281930729 
020 |a 9786611930721 
020 |a 6611930728 
029 1 |a AU@  |b 000048787180 
029 1 |a AU@  |b 000051585608 
029 1 |a CDX  |b 9507899 
029 1 |a DEBBG  |b BV040885977 
029 1 |a DEBBG  |b BV043076665 
029 1 |a DEBBG  |b BV044132866 
029 1 |a DEBSZ  |b 422155950 
029 1 |a DEBSZ  |b 430702582 
035 |a (OCoLC)302000765  |z (OCoLC)300701808  |z (OCoLC)316145963  |z (OCoLC)437093874  |z (OCoLC)646792611  |z (OCoLC)815751765  |z (OCoLC)961546343  |z (OCoLC)962599638  |z (OCoLC)988509945  |z (OCoLC)991963205  |z (OCoLC)1037909473  |z (OCoLC)1038655558  |z (OCoLC)1045498844  |z (OCoLC)1055357858  |z (OCoLC)1063812116  |z (OCoLC)1113800409  |z (OCoLC)1153532097  |z (OCoLC)1162248035  |z (OCoLC)1241748083  |z (OCoLC)1290062763  |z (OCoLC)1300606922 
050 4 |a QA21  |b .S83 2008eb 
072 7 |a MAT  |x 015000  |2 bisacsh 
072 7 |a PBX  |2 bicssc 
082 0 4 |a 510.9  |2 22 
049 |a UAMI 
100 1 |a Stedall, Jacqueline A. 
245 1 0 |a Mathematics emerging :  |b a sourcebook 1540-1900 /  |c Jacqueline Stedall. 
260 |a Oxford ;  |a New York :  |b Oxford University Press,  |c 2008. 
300 |a 1 online resource (xxi, 653 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 635-648) and index. 
505 0 |a Acknowledgements; Introduction; 1 BEGINNINGS; 2 FRESH IDEAS; 3 FORESHADOWINGS OF CALCULUS; 4 THE CALCULUS OF NEWTON AND OF LEIBNIZ; 5 THE MATHEMATICS OF NATURE: NEWTON'S PRINCIPIA; 6 EARLY NUMBER THEORY; 7 EARLY PROBABILITY; 8 POWER SERIES; 9 FUNCTIONS; 10 MAKING CALCULUS WORK; 11 LIMITS AND CONTINUITY; 12 SOLVING EQUATIONS; 13 GROUPS, FIELDS, IDEALS, AND RINGS; 14 DERIVATIVES AND INTEGRALS; 15 COMPLEX ANALYSIS; 16 CONVERGENCE AND COMPLETENESS; 17 LINEAR ALGEBRA; 18 FOUNDATIONS; People, institutions, and journals; Bibliography; Index. 
520 |a This book examines the development of mathematics from the late 16th Century to the end of the 19th Century. Each chapter will focus on a particular topic and outline its history with the provision of facsimiles of primary source material along with explanatory notes and modern interpretations. - ;Aimed at students and researchers in Mathematics, History of Mathematics and Science, this book examines the development of mathematics from the late 16th Century to the end of the 19th Century. Mathematics has an amazingly long and rich history, it has been practised in every society and culture, wi. 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematics  |x History. 
650 6 |a Mathématiques  |x Histoire. 
650 7 |a MATHEMATICS  |x History & Philosophy.  |2 bisacsh 
650 7 |a Mathematics  |2 fast 
655 7 |a History  |2 fast 
758 |i has work:  |a Mathematics emerging (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFWRY8KgBH6Y7KRVg4gVG3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Stedall, Jacqueline A.  |t Mathematics emerging.  |d Oxford ; New York : Oxford University Press, 2008  |z 9780199226900  |z 0199226903  |w (DLC) 2008300729  |w (OCoLC)248980897 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=415528  |z Texto completo 
880 8 |6 505-00/(S  |a 13.1.1 Cauchy's early work on permutations, 1815 -- 13.1.2 The Premier mémoire of Galois, 1831 -- 13.1.3 Cauchy's return to permutations, 1845 -- 13.1.4 Cayley's contribution to group theory, 1854 -- 13.2 Fields, ideals, and rings -- 13.2.1 'Galois fields', 1830 -- 13.2.2 Kummer and ideal numbers, 1847 -- 13.2.3 Dedekind on fields of finite degree, 1877 -- 13.2.4 Dedekind's definition of ideals, 1877 -- 14 DERIVATIVES AND INTEGRALS -- 14.1 Derivatives -- 14.1.1 Landen's algebraic principle, 1758 -- 14.1.2 Lagrange's derived functions, 1797 -- 14.1.3 Ampère's theory of derived functions, 1806 -- 14.1.4 Cauchy on derived functions, 1823 -- 14.1.5 The mean value theorem, and ε, δ notation, 1823 -- 14.2 Integration of real-valued functions -- 14.2.1 Euler's introduction to integration, 1768 -- 14.2.2 Cauchy's definite integral, 1823 -- 14.2.3 Cauchy and the fundamental theorem of calculus, 1823 -- 14.2.4 Riemann integration, 1854 -- 14.2.5 Lebesgue integration, 1902 -- 15 COMPLEX ANALYSIS -- 15.1 The Complex Plane -- 15.1.1 Wallis's representations, 1685 -- 15.1.2 Argand's representation, 1806 -- 15.2 Integration of complex functions -- 15.2.1 Johann Bernoulli's transformations, 1702 -- 15.2.2 Cauchy on definite complex integrals, 1814 -- 15.2.3 The calculus of residues, 1826 -- 15.2.4 Cauchy's integral formulas, 1831 -- 15.2.5 The Cauchy-Riemann equations, 1851 -- 16 CONVERGENCE AND COMPLETENESS -- 16.1 Cauchy sequences -- 16.1.1 Bolzano and 'Cauchy sequences', 1817 -- 16.1.2 Cauchy's treatment of sequences and series, 1821 -- 16.1.3 Abel's proof of the binomial theorem, 1826 -- 16.2 Uniform convergence -- 16.2.1 Cauchy's erroneous theorem, 1821 -- 16.2.2 Stokes and 'infinitely slow' convergence, 1847 -- 16.3 Completeness of the real numbers -- 16.3.1 Bolzano and greatest lower bounds, 1817 -- 16.3.2 Dedekind's definition of real numbers, 1858. 
938 |a YBP Library Services  |b YANK  |n 2965300 
938 |a YBP Library Services  |b YANK  |n 2955968 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 193072 
938 |a EBSCOhost  |b EBSC  |n 215676 
938 |a ebrary  |b EBRY  |n ebr10273010 
938 |a EBL - Ebook Library  |b EBLB  |n EBL415528 
938 |a Coutts Information Services  |b COUT  |n 9507899 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37530021 
938 |a YBP Library Services  |b YANK  |n 20451229 
994 |a 92  |b IZTAP