Cargando…

Bayesian reliability /

Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is large...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hamada, Michael, 1955-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer, ©2008.
Colección:Springer series in statistics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn288468936
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 081217s2008 nyua ob 001 0 eng d
010 |a  2008930561 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d MNU  |d OSU  |d N$T  |d NUI  |d OCLCQ  |d YDXCP  |d UAB  |d E7B  |d IDEBK  |d EBLCP  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d DEBSZ  |d DKDLA  |d OCLCQ  |d SLY  |d COO  |d OCLCQ  |d NLGGC  |d AZK  |d LOA  |d COCUF  |d Z5A  |d LIP  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d MERUC  |d ESU  |d OCLCQ  |d VT2  |d U3W  |d CUY  |d STF  |d WRM  |d OCLCQ  |d CEF  |d NRAMU  |d INT  |d OCLCQ  |d WYU  |d ICG  |d YOU  |d CANPU  |d OCLCQ  |d DKC  |d OCLCQ  |d CNTRU  |d W2U  |d AUD  |d OCLCQ  |d ZHM  |d DCT  |d ERF  |d OCLCQ  |d UKCRE  |d OCLCO  |d OCLCQ  |d DKU  |d OCLCO  |d S9M  |d OCLCL 
015 |a GBA856504  |2 bnb 
016 7 |a 014589351  |2 Uk 
019 |a 262425484  |a 315355040  |a 316866334  |a 488909030  |a 495281809  |a 646042757  |a 698465281  |a 767210487  |a 880103544  |a 961488060  |a 962658319  |a 965969688  |a 992104978  |a 994808884  |a 1005763120  |a 1007557375  |a 1035697922  |a 1037705769  |a 1038660474  |a 1044301281  |a 1045483355  |a 1055312602  |a 1056408322  |a 1060666662  |a 1060833482  |a 1060978168  |a 1066613992  |a 1069543543  |a 1074342876  |a 1078845268  |a 1081272539  |a 1086885415  |a 1102293931  |a 1110736685  |a 1110773076  |a 1112580497  |a 1153502881  |a 1162626538  |a 1204018578  |a 1391802671 
020 |a 9780387779508 
020 |a 0387779507 
020 |a 9780387779485 
020 |a 0387779485 
024 7 |a 10.1007/978-0-387-77950-8  |2 doi 
029 1 |a AU@  |b 000048771921 
029 1 |a DEBBG  |b BV044130758 
029 1 |a DEBSZ  |b 396200125 
029 1 |a DEBSZ  |b 430668325 
029 1 |a DKDLA  |b 820120-katalog:999900330305765 
029 1 |a HEBIS  |b 204255155 
029 1 |a NLGGC  |b 317566946 
029 1 |a NLGGC  |b 382157362 
029 1 |a NZ1  |b 13072738 
029 1 |a NZ1  |b 13708182 
035 |a (OCoLC)288468936  |z (OCoLC)262425484  |z (OCoLC)315355040  |z (OCoLC)316866334  |z (OCoLC)488909030  |z (OCoLC)495281809  |z (OCoLC)646042757  |z (OCoLC)698465281  |z (OCoLC)767210487  |z (OCoLC)880103544  |z (OCoLC)961488060  |z (OCoLC)962658319  |z (OCoLC)965969688  |z (OCoLC)992104978  |z (OCoLC)994808884  |z (OCoLC)1005763120  |z (OCoLC)1007557375  |z (OCoLC)1035697922  |z (OCoLC)1037705769  |z (OCoLC)1038660474  |z (OCoLC)1044301281  |z (OCoLC)1045483355  |z (OCoLC)1055312602  |z (OCoLC)1056408322  |z (OCoLC)1060666662  |z (OCoLC)1060833482  |z (OCoLC)1060978168  |z (OCoLC)1066613992  |z (OCoLC)1069543543  |z (OCoLC)1074342876  |z (OCoLC)1078845268  |z (OCoLC)1081272539  |z (OCoLC)1086885415  |z (OCoLC)1102293931  |z (OCoLC)1110736685  |z (OCoLC)1110773076  |z (OCoLC)1112580497  |z (OCoLC)1153502881  |z (OCoLC)1162626538  |z (OCoLC)1204018578  |z (OCoLC)1391802671 
037 |a 978-0-387-77948-5  |b Springer  |n http://www.springerlink.com 
050 4 |a TA169  |b .H36 2008eb 
072 7 |a TEC  |x 032000  |2 bisacsh 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
082 0 4 |a 620.0045201519542  |2 22 
084 |a 31.70  |2 bcl 
084 |a O212. 8  |2 clc 
049 |a UAMI 
245 0 0 |a Bayesian reliability /  |c Michael S. Hamada [and others]. 
260 |a New York, NY :  |b Springer,  |c ©2008. 
300 |a 1 online resource (xvi, 436 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Springer series in statistics 
504 |a Includes bibliographical references (pages 413-425)-and indexes. 
505 0 |a Reliability concepts -- Bayesian inference -- Advanced Bayesian modeling and computational methods -- Component reliability -- System reliability -- Repairable system reliability -- Regression models in reliability -- Using degradation data to assess reliability -- Planning for reliability data collection -- Assurance testing. 
588 0 |a Print version record. 
520 8 |a Bayesian Reliability presents modern methods and techniques for analyzing reliability data from a Bayesian perspective. The adoption and application of Bayesian methods in virtually all branches of science and engineering have significantly increased over the past few decades. This increase is largely due to advances in simulation-based computational tools for implementing Bayesian methods. The authors extensively use such tools throughout this book, focusing on assessing the reliability of components and systems with particular attention to hierarchical models and models incorporating explanatory variables. Such models include failure time regression models, accelerated testing models, and degradation models. The authors pay special attention to Bayesian goodness-of-fit testing, model validation, reliability test design, and assurance test planning. Throughout the book, the authors use Markov chain Monte Carlo (MCMC) algorithms for implementing Bayesian analyses--algorithms that make the Bayesian approach to reliability computationally feasible and conceptually straightforward. This book is primarily a reference collection of modern Bayesian methods in reliability for use by reliability practitioners. There are more than 70 illustrative examples, most of which utilize real-world data. This book can also be used as a textbook for a course in reliability and contains more than 160 exercises. Noteworthy highlights of the book include Bayesian approaches for the following: Goodness-of-fit and model selection methods Hierarchical models for reliability estimation Fault tree analysis methodology that supports data acquisition at all levels in the tree Bayesian networks in reliability analysis Analysis of failure count and failure time data collected from repairable systems, and the assessment of various related performance criteria Analysis of nondestructive and destructive degradation data Optimal design of reliability experiments Hierarchical reliability assurance testing Dr. Michael S. Hamada is a Technical Staff Member in the Statistical Sciences Group at Los Alamos National Laboratory and is a Fellow of the American Statistical Association. Dr. Alyson G. Wilson is a Technical Staff Member in the Statistical Sciences Group at Los Alamos National Laboratory. Dr. C. Shane Reese is an Associate Professor in the Department of Statistics at Brigham Young University. Dr. Harry F. Martz is retired from the Statistical Sciences Group at Los Alamos National Laboratory and is a Fellow of the American Statistical Association. 
506 |a University staff and students only. Requires University Computer Account login off-campus. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Reliability (Engineering)  |x Statistical methods. 
650 0 |a Distribution (Probability theory) 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Distribution (Théorie des probabilités) 
650 7 |a distribution (statistics-related concept)  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x Quality Control.  |2 bisacsh 
650 0 7 |a Reliability (Engineering)  |x Statistical methods.  |2 cct 
650 0 7 |a Bayesian statistical decision theory.  |2 cct 
650 7 |a Distribución (Teoría de probabilidades)  |2 embne 
650 0 7 |a Decisión bayesiana, Teoría de la  |2 embucm 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a Reliability (Engineering)  |x Statistical methods  |2 fast 
650 1 7 |a Waarschijnlijkheidstheorie.  |2 gtt  |0 (NL-LeOCL)078953537 
650 1 7 |a Methode van Bayes.  |2 gtt  |0 (NL-LeOCL)078445086 
700 1 |a Hamada, Michael,  |d 1955-  |1 https://id.oclc.org/worldcat/entity/E39PCjvrgpGV6xhqT4fGkFVhRC 
758 |i has work:  |a Bayesian reliability (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrccdVRwwYvHDQTRHPwvd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
773 0 |t Springer eBooks 
776 0 8 |i Print version:  |t Bayesian reliability.  |d New York, NY : Springer, ©2008  |z 9780387779485  |z 0387779485  |w (DLC) 2008930561  |w (OCoLC)225427570 
830 0 |a Springer series in statistics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=364398  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL364398 
938 |a ebrary  |b EBRY  |n ebr10245957 
938 |a EBSCOhost  |b EBSC  |n 254956 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 186123 
938 |a YBP Library Services  |b YANK  |n 2892752 
994 |a 92  |b IZTAP