Elliptic theory and noncommutative geometry : nonlocal elliptic operators /
The book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. The main goal of the study is to relate analytical invariants (in particular, the index) of such operat...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Basel ; Boston :
Birkhäuser,
©2008.
|
Colección: | Operator theory, advances and applications ;
v. 183. Operator theory, advances and applications. Advances in partial differential equations. |
Temas: | |
Acceso en línea: | Texto completo |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | EBOOKCENTRAL_ocn272313415 | ||
003 | OCoLC | ||
005 | 20240329122006.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 081117s2008 sz a ob 001 0 eng d | ||
040 | |a GW5XE |b eng |e pn |c GW5XE |d OSU |d CEF |d MHW |d OCLCQ |d N$T |d YDXCP |d OTZ |d NUI |d MND |d U5D |d E7B |d UBC |d EBLCP |d OCLCQ |d A7U |d OCLCQ |d OCLCF |d DEBSZ |d OCLCQ |d NLGGC |d LOA |d COCUF |d Z5A |d PIFAG |d ZCU |d MERUC |d ESU |d OCLCQ |d U3W |d WRM |d OCLCQ |d VTS |d OCLCQ |d INT |d OCLCQ |d WYU |d YOU |d CANPU |d TKN |d OCLCQ |d DKC |d OCLCQ |d CNTRU |d W2U |d UKAHL |d OCLCQ |d UKCRE |d EUN |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 298553032 |a 316866027 |a 336346989 |a 443714458 |a 466347806 |a 605692400 |a 607318877 |a 646756345 |a 966183092 |a 991964532 |a 995010489 |a 1038691262 |a 1060665959 |a 1064019535 |a 1078872424 |a 1086929454 |a 1097339910 |a 1153500331 | ||
020 | |a 9783764387754 |q (e-isbn) | ||
020 | |a 3764387750 |q (e-isbn) | ||
020 | |z 9783764387747 | ||
020 | |z 3764387742 | ||
024 | 7 | |a 10.1007/978-3-7643-8775-4 |2 doi | |
029 | 1 | |a DEBBG |b BV044130947 | |
029 | 1 | |a DEBSZ |b 396204961 | |
029 | 1 | |a DKDLA |b 820120-katalog:000663081 | |
029 | 1 | |a DKDLA |b 820120-katalog:999895592405765 | |
029 | 1 | |a NLGGC |b 317069799 | |
029 | 1 | |a NLGGC |b 382156552 | |
029 | 1 | |a NZ1 |b 13072564 | |
035 | |a (OCoLC)272313415 |z (OCoLC)298553032 |z (OCoLC)316866027 |z (OCoLC)336346989 |z (OCoLC)443714458 |z (OCoLC)466347806 |z (OCoLC)605692400 |z (OCoLC)607318877 |z (OCoLC)646756345 |z (OCoLC)966183092 |z (OCoLC)991964532 |z (OCoLC)995010489 |z (OCoLC)1038691262 |z (OCoLC)1060665959 |z (OCoLC)1064019535 |z (OCoLC)1078872424 |z (OCoLC)1086929454 |z (OCoLC)1097339910 |z (OCoLC)1153500331 | ||
037 | |a 149124 |b MIL | ||
050 | 4 | |a QA329.42 |b .N396 2008eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
072 | 7 | |a PBKF |2 bicssc | |
082 | 0 | 4 | |a 515.7242 |2 22 |
084 | |a 31.46 |2 bcl | ||
084 | |a 31.45 |2 bcl | ||
049 | |a UAMI | ||
100 | 1 | |a Nazaĭkinskiĭ, V. E. | |
245 | 1 | 0 | |a Elliptic theory and noncommutative geometry : |b nonlocal elliptic operators / |c Vladimir E. Nazaikinskii, Anton Yu. Savin, Boris Yu. Sternin. |
260 | |a Basel ; |a Boston : |b Birkhäuser, |c ©2008. | ||
300 | |a 1 online resource (xii, 224 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
347 | |b PDF | ||
490 | 1 | |a Operator theory, advances and applications ; |v v. 183. |a Advances in partial differential equations | |
504 | |a Includes bibliographical references (pages 217-221) and index. | ||
505 | 0 | |a Introduction; Nonlocal Functions and Bundles; Nonlocal Elliptic Operators; Elliptic Operators over C *-Algebras; Homotopy Classification; Analytic Invariants; Bott Periodicity; Direct Image and Index Formulas in K -Theory; Chern Character; Cohomological Index Formula; Cohomological Formula for the .-Index; Index of Nonlocal Operators over C *-Algebras; Index Formula on the Noncommutative Torus; An Application of Higher Traces; Index Formula for a Finite Group. | |
520 | |a The book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. The main goal of the study is to relate analytical invariants (in particular, the index) of such operators to topological invariants of the manifold itself. This problem can be solved by modern methods of noncommutative geometry. To make the book self-contained, the authors have included necessary geometric material (C*-algebras and their K-theory, cyclic homology, etc.). | ||
588 | 0 | |a Print version record. | |
590 | |a ProQuest Ebook Central |b Ebook Central Academic Complete | ||
650 | 0 | |a Elliptic operators. | |
650 | 0 | |a Noncommutative differential geometry. | |
650 | 6 | |a Opérateurs elliptiques. | |
650 | 6 | |a Géométrie différentielle non commutative. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Elliptic operators |2 fast | |
650 | 7 | |a Noncommutative differential geometry |2 fast | |
700 | 1 | |a Savin, Anton Yu. | |
700 | 1 | |a Sternin, B. I͡U. | |
758 | |i has work: |a Elliptic theory and noncommutative geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGdJpWjKkP3qh7yDkdgPYq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Nazaĭkinskiĭ, V.E. |t Elliptic theory and noncommutative geometry. |d Basel ; Boston : Birkhäuser, ©2008 |z 3764387742 |w (DLC) 2008924711 |w (OCoLC)213479423 |
830 | 0 | |a Operator theory, advances and applications ; |v v. 183. | |
830 | 0 | |a Operator theory, advances and applications. |p Advances in partial differential equations. | |
856 | 4 | 0 | |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=367337 |z Texto completo |
938 | |a Askews and Holts Library Services |b ASKH |n AH26420485 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL367337 | ||
938 | |a ebrary |b EBRY |n ebr10239484 | ||
938 | |a EBSCOhost |b EBSC |n 247683 | ||
938 | |a YBP Library Services |b YANK |n 2899148 | ||
994 | |a 92 |b IZTAP |