Cargando…

Statistical learning from a regression perspective /

Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a firs...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Berk, Richard A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, NY : Springer Verlag, ©2008.
Colección:Springer series in statistics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn272306847
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 081117s2008 nyua ob 001 0 eng d
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d IDEBK  |d CEF  |d OH1  |d UWW  |d CDX  |d N$T  |d E7B  |d UBC  |d EBLCP  |d OCLCQ  |d TPH  |d OCLCQ  |d YDXCP  |d OCLCQ  |d A7U  |d OCLCQ  |d DKDLA  |d OCLCF  |d DEBSZ  |d OCLCO  |d OCLCQ  |d SLY  |d NLGGC  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCA  |d COCUF  |d VT2  |d Z5A  |d LIP  |d PIFAG  |d ZCU  |d OTZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d MERUC  |d ESU  |d OCLCQ  |d OCLCO  |d U3W  |d OCLCA  |d MERER  |d CUY  |d OCLCQ  |d STF  |d WRM  |d OCLCQ  |d NRAMU  |d INT  |d AU@  |d OCLCO  |d OCLCQ  |d WYU  |d OCLCO  |d OCLCA  |d ICG  |d OCLCO  |d CANPU  |d TKN  |d OCLCQ  |d DKC  |d OCLCO  |d OCLCQ  |d CNTRU  |d OCLCO  |d AUD  |d OCLCQ  |d OCLCO  |d ZHM  |d OCLCQ  |d OCLCA  |d UKCRE  |d DCT  |d INARC  |d OCLCO  |d OCLCQ  |d S9M  |d OCLCL 
016 7 |a 000043596997  |2 AU 
019 |a 243942859  |a 299122685  |a 404100788  |a 488908983  |a 607318852  |a 646756342  |a 698465042  |a 846613325  |a 874340022  |a 880103558  |a 961632073  |a 962697981  |a 966203971  |a 985032579  |a 991967365  |a 994786796  |a 1005748151  |a 1007557245  |a 1035662602  |a 1037792463  |a 1038676841  |a 1045474825  |a 1055312642  |a 1058045751  |a 1066591076  |a 1078860641  |a 1081282241  |a 1102297076  |a 1110731725  |a 1153516075  |a 1162794469  |a 1204000908  |a 1228590950  |a 1285859881 
020 |a 9780387775012 
020 |a 0387775013 
020 |a 9780387775005 
020 |a 0387775005 
020 |a 6611491376  |q (electronic bk.) 
020 |a 9786611491376  |q (electronic bk.) 
024 7 |a 10.1007/978-0-387-77501-2  |2 doi 
029 1 |a AU@  |b 000048698273 
029 1 |a CDX  |b 8740899 
029 1 |a DEBBG  |b BV044131180 
029 1 |a DEBSZ  |b 285787942 
029 1 |a DEBSZ  |b 39621665X 
029 1 |a DEBSZ  |b 430687192 
029 1 |a DKDLA  |b 820120-katalog:999895596205765 
029 1 |a HEBIS  |b 202430901 
029 1 |a NLGGC  |b 382156420 
029 1 |a NZ1  |b 13072361 
035 |a (OCoLC)272306847  |z (OCoLC)243942859  |z (OCoLC)299122685  |z (OCoLC)404100788  |z (OCoLC)488908983  |z (OCoLC)607318852  |z (OCoLC)646756342  |z (OCoLC)698465042  |z (OCoLC)846613325  |z (OCoLC)874340022  |z (OCoLC)880103558  |z (OCoLC)961632073  |z (OCoLC)962697981  |z (OCoLC)966203971  |z (OCoLC)985032579  |z (OCoLC)991967365  |z (OCoLC)994786796  |z (OCoLC)1005748151  |z (OCoLC)1007557245  |z (OCoLC)1035662602  |z (OCoLC)1037792463  |z (OCoLC)1038676841  |z (OCoLC)1045474825  |z (OCoLC)1055312642  |z (OCoLC)1058045751  |z (OCoLC)1066591076  |z (OCoLC)1078860641  |z (OCoLC)1081282241  |z (OCoLC)1102297076  |z (OCoLC)1110731725  |z (OCoLC)1153516075  |z (OCoLC)1162794469  |z (OCoLC)1204000908  |z (OCoLC)1228590950  |z (OCoLC)1285859881 
037 |a 978-0-387-77500-5  |b Springer  |n http://www.springerlink.com 
050 4 |a QA278.2  |b .B463 2008eb 
060 4 |a Online Book 
072 7 |a MAT  |x 029030  |2 bisacsh 
082 0 4 |a 519.536 22  |2 22 
084 |a O212. 1  |2 clc 
049 |a UAMI 
100 1 |a Berk, Richard A. 
245 1 0 |a Statistical learning from a regression perspective /  |c Richard A. Berk. 
260 |a New York, NY :  |b Springer Verlag,  |c ©2008. 
300 |a 1 online resource (xvii, 358 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Springer series in statistics 
504 |a Includes bibliographical references (pages 343-353) and index. 
588 0 |a Print version record. 
505 0 |a Statistical learning as a regression problem -- Regression splines and regression smoothers -- Classification and regression trees (CART) -- Bagging -- Random forests -- Boosting -- Support vector machines -- Broader implications and a bit of craft lore. 
520 |a Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical. Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one's data and not apply statistical learning procedures that require more than the data can provide. The material is written for graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R. Richard Berk is Distinguished Professor of Statistics Emeritus from the Department of Statistics at UCLA and currently a Professor at the University of Pennsylvania in the Department of Statistics and in the Department of Criminology. He is an elected fellow of the American Statistical Association and the American Association for the Advancement of Science and has served in a professional capacity with a number of organizations such as the Committee on Applied and Theoretical Statistics for the National Research Council and the Board of Directors of the Social Science Research Council. His research has ranged across a variety of applications in the social and natural sciences. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Regression analysis. 
650 1 2 |a Regression Analysis 
650 6 |a Analyse de régression. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Regression Analysis.  |2 bisacsh 
650 0 7 |a Regression analysis.  |2 cct 
650 7 |a Análisis de regresión  |2 embne 
650 7 |a Regression analysis  |2 fast 
758 |i has work:  |a Statistical learning from a regression perspective (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFyYRX9cHFr98yBdYbBpT3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Berk, Richard A.  |t Statistical learning from a regression perspective.  |d New York, NY : Springer Verlag, ©2008  |z 9780387775005  |z 0387775005  |w (DLC) 2008926886  |w (OCoLC)213855653 
830 0 |a Springer series in statistics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=372798  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 8740899 
938 |a EBL - Ebook Library  |b EBLB  |n EBL372798 
938 |a ebrary  |b EBRY  |n ebr10239481 
938 |a EBSCOhost  |b EBSC  |n 254950 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 149137 
938 |a Internet Archive  |b INAR  |n statisticallearn0000berk 
938 |a YBP Library Services  |b YANK  |n 2914290 
994 |a 92  |b IZTAP