Cargando…

Stability of stationary sets in control systems with discontinuous nonlinearities /

This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: I͡Akubovich, V. A. (Vladimir Andreevich)
Otros Autores: Leonov, G. A. (Gennadiĭ Alekseevich), Gelig, Arkadiĭ Khaĭmovich
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, ©2004.
Colección:Series on stability, vibration, and control of systems. v. 14.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn262616624
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 081016s2004 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d OCLCA  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d YDXCP  |d STF  |d EBLCP  |d DEBSZ  |d I9W  |d OCLCQ  |d AGLDB  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d JBG  |d VTS  |d NRAMU  |d ICG  |d OCLCQ  |d OCLCA  |d INT  |d REC  |d VT2  |d OCLCQ  |d WYU  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBA458826  |2 bnb 
016 7 |a 012969339  |2 Uk 
019 |a 505147630  |a 646768570  |a 764500522  |a 868641792  |a 879074263  |a 961533844  |a 962630738  |a 988432213  |a 991953836  |a 1037767702  |a 1038573933  |a 1045509543  |a 1055331601  |a 1062905862  |a 1086882160  |a 1153534384  |a 1228589343 
020 |a 9789812794239  |q (electronic bk.) 
020 |a 9812794239  |q (electronic bk.) 
020 |z 9812387196 
020 |z 9789812387196 
029 1 |a AU@  |b 000049162861 
029 1 |a AU@  |b 000051413754 
029 1 |a AU@  |b 000058360397 
029 1 |a DEBBG  |b BV043102906 
029 1 |a DEBBG  |b BV044178987 
029 1 |a DEBSZ  |b 422100013 
029 1 |a DEBSZ  |b 424073234 
029 1 |a DEBSZ  |b 445582537 
029 1 |a GBVCP  |b 802689299 
029 1 |a NZ1  |b 13858063 
029 1 |a AU@  |b 000060528354 
035 |a (OCoLC)262616624  |z (OCoLC)505147630  |z (OCoLC)646768570  |z (OCoLC)764500522  |z (OCoLC)868641792  |z (OCoLC)879074263  |z (OCoLC)961533844  |z (OCoLC)962630738  |z (OCoLC)988432213  |z (OCoLC)991953836  |z (OCoLC)1037767702  |z (OCoLC)1038573933  |z (OCoLC)1045509543  |z (OCoLC)1055331601  |z (OCoLC)1062905862  |z (OCoLC)1086882160  |z (OCoLC)1153534384  |z (OCoLC)1228589343 
050 4 |a QA402.3  |b .I248 2004eb 
072 7 |a TEC  |x 004000  |2 bisacsh 
072 7 |a TEC  |x 037000  |2 bisacsh 
082 0 4 |a 629.836  |2 22 
049 |a UAMI 
100 1 |a I͡Akubovich, V. A.  |q (Vladimir Andreevich) 
245 1 0 |a Stability of stationary sets in control systems with discontinuous nonlinearities /  |c V.A. Yakubovich, G.A. Leonov, A. Kh. Gelig. 
260 |a River Edge, NJ :  |b World Scientific,  |c ©2004. 
300 |a 1 online resource (xv, 334 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on stability, vibration, and control of systems. Series A ;  |v v. 14 
504 |a Includes bibliographical references (pages 323-332) and index. 
588 0 |a Print version record. 
505 0 |a 1. Foundations of theory of differential equations with discontinuous right-hand sides. 1.1. Notion of solution to differential equation with discontinuous right-hand side. 1.2. Systems of differential equations with multiple-valued right-hand sides (differential inclusions). 1.3. Dichotomy and stability -- 2. Auxiliary algebraic statements on solutions of matrix inequalities of a special type. 2.1. Algebraic problems that occur when finding conditions for the existence of Lyapunov functions from some multiparameter functional class. Circle criterion. Popov criterion. 2.2. Relevant algebraic statements -- 3. Dichotomy and stability of nonlinear systems with multiple equilibria. 3.1. Systems with piecewise single-valued nonlinearities. 3.2. Systems with monotone piecewise single-valued nonlinearities. 3.3. Systems with gradient nonlinearities -- 4. Stability of equilibria sets of pendulum-like systems. 4.1. Formulation of the stability problem for equilibrium sets of pendulum-like systems. 4.2. The method of periodic Lyapunov functions. 4.3. An analogue of the circle criterion for pendulum-like systems. 4.4. The method of non-local reduction. 4.5. Necessary conditions for gradient-like behavior of pendulum-like systems. 4.6. Stability of the dynamical systems describing the synchronous machines -- 5. Appendix. Proofs of the theorems of chapter 2. 5.1. Proofs of theorems on controllability, observability, irreducibility, and of lemmas 2.4 and 2.7. 5.2. Proof of theorem 2.13 (nonsingular Case). Theorem on solutions of Lur'e equation (algebraic Riccati equation). 5.3. Proof of theorem 2.13 (completion) and lemma 5.1. 5.4. Proofs of theorems 2.12 and 2.14 (singular Case). 5.5. Proofs of theorems 2.17-2.19 on losslessness of S-procedure. 
520 |a This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method. Various versions of the Kalman-Yakubovich lemma on solvability of matrix inequalities are presented and discussed in detail. It is shown how the tools developed can be applied to stability investigations of relay control systems, gyroscopic systems, mechanical systems with a Coulomb friction, nonlinear electrical circuits, cellular neural networks, phase-locked loops, and synchronous machines. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Control theory. 
650 0 |a Nonlinear control theory. 
650 0 |a Set theory. 
650 0 |a System analysis. 
650 0 |a Differential equations, Nonlinear. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering systems. 
650 2 |a Systems Analysis 
650 6 |a Théorie de la commande. 
650 6 |a Commande non linéaire. 
650 6 |a Théorie des ensembles. 
650 6 |a Analyse de systèmes. 
650 6 |a Équations différentielles non linéaires. 
650 6 |a Mathématiques de l'ingénieur. 
650 6 |a Systèmes d'ingénierie. 
650 7 |a systems analysis.  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x Automation.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Robotics.  |2 bisacsh 
650 7 |a Control theory  |2 fast 
650 7 |a Differential equations, Nonlinear  |2 fast 
650 7 |a Engineering mathematics  |2 fast 
650 7 |a Engineering systems  |2 fast 
650 7 |a Nonlinear control theory  |2 fast 
650 7 |a Set theory  |2 fast 
650 7 |a System analysis  |2 fast 
650 1 7 |a Controleleer.  |2 gtt 
650 1 7 |a Verzamelingen (wiskunde)  |2 gtt 
650 1 7 |a Systeemtheorie.  |2 gtt 
650 1 7 |a Systeemanalyse.  |2 gtt 
700 1 |a Leonov, G. A.  |q (Gennadiĭ Alekseevich) 
700 1 |a Gelig, Arkadiĭ Khaĭmovich. 
758 |i has work:  |a Stability of stationary sets in control systems with discontinuous nonlinearities (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfQJ4VQpwKtW8T9tFmdjP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a I͡Akubovich, V.A. (Vladimir Andreevich).  |t Stability of stationary sets in control systems with discontinuous nonlinearities.  |d River Edge, NJ : World Scientific, ©2004  |z 9812387196  |z 9789812387196  |w (DLC) 2005297772  |w (OCoLC)55875661 
830 0 |a Series on stability, vibration, and control of systems.  |n Series A ;  |v v. 14. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679612  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685102 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679612 
938 |a ebrary  |b EBRY  |n ebr10255675 
938 |a EBSCOhost  |b EBSC  |n 235597 
938 |a YBP Library Services  |b YANK  |n 2891997 
994 |a 92  |b IZTAP