Cargando…

Fuzzy neural network theory and application /

This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. S...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Puyin
Otros Autores: Li, Hong-Xing, 1953-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, 2004.
Colección:Series in machine perception and artificial intelligence ; v. 59.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn262616298
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 081016s2004 nju ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d DKDLA  |d OCLCQ  |d NLGGC  |d OCLCO  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AZK  |d LOA  |d AGLDB  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d VGM  |d ZCU  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d KIJ  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d TKN  |d WYU  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBA472821  |2 bnb 
016 7 |a 013005013  |2 Uk 
019 |a 505149564  |a 646768301  |a 764499300  |a 879074229  |a 961541644  |a 962594791  |a 1055375000  |a 1062967108  |a 1081221843  |a 1087370246  |a 1228539339 
020 |a 9789812794215  |q (electronic bk.) 
020 |a 9812794212  |q (electronic bk.) 
020 |z 9789812387868 
020 |z 9812387862 
029 1 |a AU@  |b 000049162608 
029 1 |a AU@  |b 000051366272 
029 1 |a DEBBG  |b BV043105843 
029 1 |a DEBBG  |b BV044178883 
029 1 |a DEBSZ  |b 422100129 
029 1 |a DEBSZ  |b 431677182 
029 1 |a GBVCP  |b 802689213 
029 1 |a NZ1  |b 13857970 
035 |a (OCoLC)262616298  |z (OCoLC)505149564  |z (OCoLC)646768301  |z (OCoLC)764499300  |z (OCoLC)879074229  |z (OCoLC)961541644  |z (OCoLC)962594791  |z (OCoLC)1055375000  |z (OCoLC)1062967108  |z (OCoLC)1081221843  |z (OCoLC)1087370246  |z (OCoLC)1228539339 
050 4 |a QA76.87  |b .L58 2004eb 
072 7 |a COM  |x 044000  |2 bisacsh 
082 0 4 |a 006.32  |2 22 
084 |a 31.10  |2 bcl 
084 |a 54.72  |2 bcl 
049 |a UAMI 
100 1 |a Liu, Puyin. 
245 1 0 |a Fuzzy neural network theory and application /  |c Puyin Liu, Hongxing Li. 
260 |a River Edge, NJ :  |b World Scientific,  |c 2004. 
300 |a 1 online resource (xvii, 376 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 59 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Foreword; Preface; Chapter I Introduction; S1.1 Classification of fuzzy neural networks; S1.2 Fuzzy neural networks with fuzzy operators; S1.3 Puzzified neural networks; 1.3.1 Learning algorithm for regular FNN's; 1.3.2 Universal approximation of regular FNN's; S1.4 Fuzzy systems and fuzzy inference networks; 1.4.1 Fuzzy systems; 1.4.2 Fuzzy inference networks; S1.5 Fuzzy techniques in image restoration; 1.5.1 Crisp nonlinear filters; 1.5.2 Fuzzy filters; S1.6 Notations and preliminaries; S1.7 Outline of the topics of the chapters; References. 
505 8 |a Chapter II Fuzzy Neural Networks for Storing and ClassifyingS2.1 Two layer max-min fuzzy associative memory; 2.1.1 FAM with threshold; 2.1.2 Simulation example; S2.2 Fuzzy 6-learning algorithm; 2.2.1 FAM's based on 'V -- /\'; 2.2.2 FAM's based on 'V -- *'; S2.3 BP learning algorithm of FAM's; 2.3.1 Two analytic functions; 2.3.2 BP learning algorithm; S2.4 Fuzzy ART and fuzzy ARTMAP; 2.4.1 ART1 architecture; 2.4.2 Fuzzy ART; 2.4.3 Fuzzy ARTMAP; 2.4.4 Real examples; References; Chapter III Fuzzy Associative Memory-Feedback Networks; S3.1 Fuzzy Hopfield networks. 
505 8 |a 3.1.1 Attractor and attractive basin3.1.2 Learning algorithm based on fault-tolerance; 3.1.3 Simulation example; S3.2 Fuzzy Hopfield network with threshold; 3.2.1 Attractor and stability; 3.2.2 Analysis of fault-tolerance; S3.3 Stability and fault-tolerance of FBAM; 3.3.1 Stability analysis; 3.3.2 Fault-tolerance analysis; 3.3.3 A simulation example; S3.4 Learning algorithm for FBAM; 3.4.1 Learning algorithm based on fault-tolerance; 3.4.2 A simulation example; 3.4.3 Optimal fault-tolerance; 3.4.4 An example; S3.5 Connection network of FBAM; 3.5.1 Fuzzy row-restricted matrix. 
505 8 |a 3.5.2 The connection relations of attractors3.5.3 The elementary memory of (R L); 3.5.4 The transition laws of states; S3.6 Equilibrium analysis of fuzzy Hopfield network; 3.6.1 Connection relations of attractors; 3.6.2 Elementary memory of W; 3.6.3 The state transition laws; References; Chapter IV Regular Fuzzy Neural Networks; S4.1 Regular fuzzy neuron and regular FNN; 4.1.1 Regular fuzzy neuron; 4.1.2 Regular fuzzy neural network; 4.1.3 A counter example of universal approximation; 4.1.4 An example of universal approximation; S4.2 Learning algorithms; 4.2.1 Preliminaries. 
505 8 |a 4.2.2 Calculus of V -- /\ functions4.2.3 Error function; 4.2.4 Partial derivatives of error function; 4.2.5 Learning algorithm and simulation; S4.3 Conjugate gradient algorithm for fuzzy weights; 4.3.1 Fuzzy CG algorithm and convergence; 4.3.2 GA for finding optimal learning constant; 4.3.3 Simulation examples; S4.4 Universal approximation to fuzzy valued functions; 4.4.1 Fuzzy valued Bernstein polynomial; 4.4.2 Four-layer regular feedforward FNN; 4.4.3 An example; S4.5 Approximation analysis of regular FNN; 4.5.1 Closure fuzzy mapping; 4.5.2 Learning algorithm. 
520 |a This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Neural networks (Computer science) 
650 0 |a Fuzzy systems. 
650 2 |a Neural Networks, Computer 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Systèmes flous. 
650 7 |a COMPUTERS  |x Neural Networks.  |2 bisacsh 
650 7 |a Fuzzy systems  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
700 1 |a Li, Hong-Xing,  |d 1953-  |1 https://id.oclc.org/worldcat/entity/E39PCjDVykq7J4xj9q3kx9HqYq 
776 0 8 |i Print version:  |a Liu, Puyin.  |t Fuzzy neural network theory and application.  |d River Edge, NJ : World Scientific, 2004  |z 9812387862  |z 9789812387868  |w (DLC) 2007296333  |w (OCoLC)56430192 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 59. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679483  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685100 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1679483 
938 |a ebrary  |b EBRY  |n ebr10255510 
938 |a EBSCOhost  |b EBSC  |n 235586 
938 |a YBP Library Services  |b YANK  |n 2891995 
994 |a 92  |b IZTAP