Cargando…

Syntactic pattern recognition for seismic oil exploration /

The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Huang, Kou-Yuan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, NJ : World Scientific, 2002.
Colección:Series in machine perception and artificial intelligence ; v. 46.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn261470345
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 081010s2002 njua ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d NLGGC  |d OCLCO  |d EBLCP  |d I9W  |d OCLCQ  |d AGLDB  |d COCUF  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d UKCRE  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d TMA  |d OCLCQ 
019 |a 505147437  |a 646768133  |a 764498190  |a 868641143  |a 879074231  |a 961562056  |a 962624484  |a 988518217  |a 991993126  |a 994900127  |a 1037739903  |a 1038687777  |a 1045467440  |a 1055365870  |a 1065097862  |a 1065100775  |a 1081209331  |a 1153486368  |a 1228595250 
020 |a 9789812775740  |q (electronic bk.) 
020 |a 9812775749  |q (electronic bk.) 
020 |z 9810246005 
020 |z 9789810246006 
029 1 |a AU@  |b 000049163056 
029 1 |a AU@  |b 000051415572 
029 1 |a DEBBG  |b BV043095044 
029 1 |a DEBBG  |b BV044178890 
029 1 |a DEBSZ  |b 422097640 
029 1 |a GBVCP  |b 802688438 
029 1 |a NZ1  |b 13857889 
035 |a (OCoLC)261470345  |z (OCoLC)505147437  |z (OCoLC)646768133  |z (OCoLC)764498190  |z (OCoLC)868641143  |z (OCoLC)879074231  |z (OCoLC)961562056  |z (OCoLC)962624484  |z (OCoLC)988518217  |z (OCoLC)991993126  |z (OCoLC)994900127  |z (OCoLC)1037739903  |z (OCoLC)1038687777  |z (OCoLC)1045467440  |z (OCoLC)1055365870  |z (OCoLC)1065097862  |z (OCoLC)1065100775  |z (OCoLC)1081209331  |z (OCoLC)1153486368  |z (OCoLC)1228595250 
050 4 |a TN271.P4  |b H88 2002eb 
072 7 |a TEC  |x 026000  |2 bisacsh 
082 0 4 |a 622/.1828/0285  |2 22 
049 |a UAMI 
100 1 |a Huang, Kou-Yuan. 
245 1 0 |a Syntactic pattern recognition for seismic oil exploration /  |c Kou-Yuan Huang. 
260 |a River Edge, NJ :  |b World Scientific,  |c 2002. 
300 |a 1 online resource (xiv, 133 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 46 
504 |a Includes bibliographical references (pages 123-129) and index. 
588 0 |a Print version record. 
505 0 |a AUTHOR'S BIOGRAPHY; PREFACE; CONTENTS; 1 INTRODUCTION TO SYNTACTIC PATTERN RECOGNITION; 1.1. SUMMARY; 1.2. INTRODUCTION; 1.3. ORGANIZATION OF THIS BOOK; 2 INTRODUCTION TO FORMAL LANGUAGES AND AUTOMATA; 2.1. SUMMARY; 2.2. LANGUAGES AND GRAMMARS; 2.3. FINITE-STATE AUTOMATON; 2.4. EARLEY'S PARSING; 2.5. FINITE-STATE GRAMMATICAL INFERENCE; 2.6. STRING DISTANCE COMPUTATION; 3 ERROR-CORRECTING FINITE-STATE AUTOMATON FOR RECOGNITION OF RICKER WAVELETS; 3.1. SUMMARY; 3.2. INTRODUCTION; 3.3. SYNTACTIC PATTERN RECOGNITION; 3.3.1. Training and Testing Ricker Wavelets. 
505 8 |a 3.3.2. Location of Waveforms and Pattern Representation3.4. EXPANDED GRAMMARS; 3.4.1. General Expanded Finite-State Grammar; 3.4.2. Restricted Expanded Finite-State Grammar; 3.5. MINIMUM-DISTANCE ERROR-CORRECTING FINITE-STATE PARSING; 3.6. CLASSIFICATION OF RICKER WAVELETS; 3.7. DISCUSSION AND CONCLUSIONS; 4 ATTRIBUTED GRAMMAR AND ERROR-CORRECTING EARLEY'S PARSING; 4.1. SUMMARY; 4.2. INTRODUCTION; 4.3. ATTRIBUTED PRIMITIVES AND STRING; 4.4. DEFINITION OF ERROR TRANSFORMATIONS FOR ATTRIBUTED STRINGS; 4.5. INFERENCE OF ATTRIBUTED GRAMMAR. 
505 8 |a 4.6. MINIMUM-DISTANCE ERROR-CORRECTING EARLEY'S PARSING FOR ATTRIBUTED STRING4.7. EXPERIMENT; 5 ATTRIBUTED GRAMMAR AND MATCH PRIMITIVE MEASURE (MPM) FOR RECOGNITION OF SEISMIC WAVELETS; 5.1. SUMMARY; 5.2. SIMILARITY MEASURE OF ATTRIBUTED STRING MATCHING; 5.3. INFERENCE OF ATTRIBUTED GRAMMAR; 5.4. TOP-DOWN PARSING USING MPM; 5.5. EXPERIMENTS OF SEISMIC PATTERN RECOGNITION; 5.5.1. Recognition of Seismic Ricker Wavelets; 5.5.2. Recognition of Wavelets in Real Seismogram; 5.6. CONCLUSIONS; 6 STRING DISTANCE AND LIKELIHOOD RATIO TEST FOR DETECTION OF CANDIDATE BRIGHT SPOT; 6.1. SUMMARY. 
505 8 |a 6.2. INTRODUCTION6.3. OPTIMAL QUANTIZATION ENCODING; 6.4. LIKELIHOOD RATIO TEST (LRT); 6.5. LEVENSHTEIN DISTANCE AND ERROR PROBABILITY; 6.6. EXPERIMENT AT MISSISSIPPI CANYON; 6.6.1. Likelihood Ratio Test (LRT); 6.6.2. Threshold for Global Detection; 6.6.3. Threshold for the Detection of Candidate Bright Spot; 6.7. EXPERIMENT AT HIGH ISLAND; 7 TREE GRAMMAR AND AUTOMATON FOR SEISMIC PATTERN RECOGNITION; 7.1. SUMMARY; 7.2. INTRODUCTION; 7.3. TREE GRAMMAR AND LANGUAGE; 7.4. TREE AUTOMATON; 7.5. TREE REPRESENTATIONS OF PATTERNS; 7.6. INFERENCE OF EXPANSIVE TREE GRAMMAR. 
505 8 |a 7.7. WEIGHTED MINIMUM-DISTANCE SPECTA7.8. MODIFIED MAXIMUM-LIKELIHOOD SPECTA; 7.9. MINIMUM DISTANCE GECTA; 7.10. EXPERIMENTS ON INPUT TESTING SEISMOGRAMS; 7.11. DISCUSSION AND CONCLUSIONS; 8 A HIERARCHICAL RECOGNITION SYSTEM OF SEISMIC PATTERNS AND FUTURE STUDY; 8.1. SUMMARY; 8.2. INTRODUCTION; 8.3. SYNTACTIC PATTERN RECOGNITION; 8.3.1. Linking Processing and Segmentation; 8.3.2. Primitive Recognition; 8.3.3. Training Patterns; 8.3.4. Grammatical Inference; 8.3.5. Finite-state Error Correcting Parsing; 8.4. COMMON-SOURCE SIMULATED SEISMOGRAM RESULTS; 8.5. STACKED SIMULATED SEISMOGRAM RESULTS. 
520 |a The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of the subsurface. Syntactic/structural pattern recognition techniques can recognize the structural seismic patterns and improve seismic interpretations. The syntactic analysis methods include: (1) the error-correcting finite-state parsing, (2) the modified error-correcting Earley's parsing, (3) the par. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Petroleum  |x Prospecting  |x Data processing. 
650 0 |a Pattern recognition systems. 
650 0 |a Seismic reflection method  |x Data processing. 
650 6 |a Pétrole  |x Prospection  |x Informatique. 
650 6 |a Reconnaissance des formes (Informatique) 
650 6 |a Méthode sismique-réflexion  |x Informatique. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mining.  |2 bisacsh 
650 7 |a Pattern recognition systems  |2 fast 
650 7 |a Petroleum  |x Prospecting  |x Data processing  |2 fast 
650 7 |a Seismic reflection method  |x Data processing  |2 fast 
758 |i has work:  |a Syntactic pattern recognition for seismic oil exploration (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG4BbXhFwGdcHwjtxRtjbq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Huang, Kou-Yuan.  |t Syntactic pattern recognition for seismic oil exploration.  |d River Edge, NJ : World Scientific, 2002  |z 9810246005  |z 9789810246006  |w (DLC) 2002514235  |w (OCoLC)50134555 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 46. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1679492  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684607 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1679492 
938 |a ebrary  |b EBRY  |n ebr10255381 
938 |a EBSCOhost  |b EBSC  |n 235838 
938 |a YBP Library Services  |b YANK  |n 2889229 
994 |a 92  |b IZTAP