Cargando…

Lectures on Finsler geometry /

In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curva...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shen, Zhongmin, 1963-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, NJ : World Scientific, ©2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn261336333
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 081009s2001 si a ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d IDEBK  |d E7B  |d OCLCQ  |d OCLCF  |d DKDLA  |d OCLCQ  |d NLGGC  |d EBLCP  |d DEBSZ  |d OCLCQ  |d YDXCP  |d STF  |d OCLCQ  |d LOA  |d AGLDB  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d K6U  |d LEAUB  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 505144470  |a 646769068  |a 764502964  |a 815756559  |a 961540348  |a 962607418  |a 968291599  |a 988448840  |a 991911458  |a 1037758759  |a 1038657004  |a 1045504100  |a 1055344282  |a 1063962313  |a 1081284626  |a 1086506924 
020 |a 9789812811622  |q (electronic bk.) 
020 |a 9812811621  |q (electronic bk.) 
020 |a 1281960659 
020 |a 9781281960658 
020 |a 9789810245313 
020 |a 9810245319 
020 |z 9789810245306 
020 |z 9810245300 
020 |z 9810245319  |q (pbk.) 
029 1 |a AU@  |b 000049162527 
029 1 |a AU@  |b 000051377884 
029 1 |a DEBBG  |b BV043090962 
029 1 |a DEBBG  |b BV044179569 
029 1 |a DEBSZ  |b 405248733 
029 1 |a DEBSZ  |b 422097349 
029 1 |a GBVCP  |b 802687679 
029 1 |a NZ1  |b 13858266 
035 |a (OCoLC)261336333  |z (OCoLC)505144470  |z (OCoLC)646769068  |z (OCoLC)764502964  |z (OCoLC)815756559  |z (OCoLC)961540348  |z (OCoLC)962607418  |z (OCoLC)968291599  |z (OCoLC)988448840  |z (OCoLC)991911458  |z (OCoLC)1037758759  |z (OCoLC)1038657004  |z (OCoLC)1045504100  |z (OCoLC)1055344282  |z (OCoLC)1063962313  |z (OCoLC)1081284626  |z (OCoLC)1086506924 
050 4 |a QA689  |b .S54 2001eb 
072 7 |a MAT  |x 012020  |2 bisacsh 
072 7 |a PBMS  |2 bicssc 
082 0 4 |a 516.3/73  |2 22 
049 |a UAMI 
100 1 |a Shen, Zhongmin,  |d 1963-  |1 https://id.oclc.org/worldcat/entity/E39PCjrTbtCdD7qvmwqvc3X8G3 
245 1 0 |a Lectures on Finsler geometry /  |c Zhongmin Shen. 
260 |a Singapore ;  |a River Edge, NJ :  |b World Scientific,  |c ©2001. 
300 |a 1 online resource (xiv, 307 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 299-304) and index. 
588 0 |a Print version record. 
520 |a In 1854, B. Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P. Finsler studied the variation problem in regular metric spaces. Around 1926, L. Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D. Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world. Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory. 
505 0 |a Ch. 1. Finsler spaces. 1.1. Metric spaces. 1.2. Minkowski spaces. 1.3. Finsler spaces -- ch. 2. Finsler m spaces. 2.1. Measure spaces. 2.2. Volume on a Finsler space. 2.3. Hyperplanes in a Minkowski m space. 2.4. Hypersurfaces in a Finsler m space -- ch. 3. Co-area formula. 3.1. Legendre transformations. 3.2. Gradients of functions. 3.3. Co-area formula -- ch. 4. Isoperimetric inequalities. 4.1. Isoperirnetric profiles. 4.2. Sobolev constants and first eigenvalue. 4.3. Concentration of Finsler m spaces. 4.4. Observable diameter -- ch. 5. Geodesies and connection. 5.1. Geodesies. 5.2. Chern connection. 5.3. Covariant derivatives. 5.4. Geodesic flow -- ch. 6. Riemann curvature. 6.1. Birth of the Riemann curvature. 6.2. Geodesic fields. 6.3. Projectively related Finsler metrics -- ch. 7. Non-Riemannian curvatures. 7.1. Cartan torsion. 7.2. Chern curvature. 7.3. S-curvature -- ch. 8. Structure equations. 8.1. Structure equations of Finsler spaces. 8.2. Structure equations of Riemannian metrics. 8.3. Riemann curvature of randers metrics -- ch. 9. Finsler spaces of constant curvature. 9.1. Finsler metrics of constant curvature. 9.2. Examples. 9.3. Randers metrics of constant curvature -- ch. 10. Second variation formula. 10.1. T-curvature. 10.2. Second variation of length. 10.3. Synge theorem -- ch. 11. Geodesies and exponential map. 11.1. Exponential map. 11.2. Jacobi fields. 11.3. Minimality of geodesies. 11.4. Completeness of Finsler spaces -- ch. 12. Conjugate radius and injectivity radius. 12.1. Conjugate radius. 12.2. Injectivity radius. 12.3. Geodesic loops and closed geodesies -- ch. 13. Basic comparison theorems. 13.1. Flag curvature bounded above. 13.2. Positive flag curvature. 13.3. Ricci curvature bounded below. 13.4. Green-Dazord theorem -- ch. 14. Geometry of hypersurfaces. 14.1. Hessian and Laplacian. 14.2. Normal curvature. 14.3. Mean curvature. 14.4. Shape operator -- ch. 15. Geometry of metric spheres. 15.1. Estimates on the normal curvature. 15.2. Convexity of metric balls. 15.3. Estimates on the mean curvature. 15.4. Metric spheres in a convex domain -- ch. 16. Volume comparison theorems. 16.1. Volume of metric balls. 16.2. Volume of tubular neighborhoods. 16.3. Gromov simplicial norms. 16.4. Estimates on the expansion distance -- ch. 17. Morse theory of loop spaces. 17.1. A review on the morse theory. 17.2. Indexes of geodesic loops. 17.3. Energy functional on a loop space. 17.4. Approximation of loop spaces -- ch. 18. Vanishing theorems for homotopy groups. 18.1. Intermediate curvatures. 18.2. Vanishing theorem for homotopy groups. 18.3. Finsler spaces of positive constant curvature -- ch. 19. Spaces of Finsler spaces. 19.1. Gromov-Hausdorff distance. 19.2. Precompactness theorem. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Finsler spaces. 
650 0 |a Geometry, Differential. 
650 6 |a Espaces de Finsler. 
650 6 |a Géométrie différentielle. 
650 7 |a MATHEMATICS  |x Geometry  |x Analytic.  |2 bisacsh 
650 7 |a Finsler spaces  |2 fast 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Géométrie différentielle.  |2 rvm 
758 |i has work:  |a Lectures on Finsler Geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGcvXcMGv9VbrBPdVchQG3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Shen, Zhongmin, 1963-  |t Lectures on Finsler geometry.  |d Singapore ; River Edge, NJ : World Scientific, ©2001  |z 9810245300  |z 9789810245306  |w (DLC) 2005297899  |w (OCoLC)47797302 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681622  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685634 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1681622 
938 |a ebrary  |b EBRY  |n ebr10256005 
938 |a EBSCOhost  |b EBSC  |n 235868 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 196065 
938 |a YBP Library Services  |b YANK  |n 2889345 
994 |a 92  |b IZTAP