Cargando…

Stochastic ordinary and stochastic partial differential equations : transition from microscopic to macroscopic equations /

This book provides the first rigorous derivation of mesoscopic and macroscopic equations from a deterministic system of microscopic equations. The microscopic equations are cast in the form of a deterministic (Newtonian) system of coupled nonlinear oscillators for N large particles and infinitely ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kotelenez, P. (Peter), 1943- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Springer Science+Business Media, ©2008.
Colección:Stochastic modelling and applied probability ; 58.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 EBOOKCENTRAL_ocn233971424
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 071029s2008 nyu ob 001 0 eng c
040 |a COO  |b eng  |e pn  |c COO  |d GW5XE  |d CDX  |d CNTRU  |d N$T  |d YDXCP  |d IDEBK  |d CEF  |d OCLCQ  |d YNG  |d CSU  |d U5D  |d MNU  |d E7B  |d REB  |d OCLCO  |d EBLCP  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d SLY  |d OCLCQ  |d LOA  |d COCUF  |d VT2  |d MOR  |d Z5A  |d PIFAG  |d OTZ  |d ZCU  |d OCLCQ  |d MERUC  |d ESU  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d INT  |d AU@  |d OCLCQ  |d WYU  |d ICG  |d YOU  |d TKN  |d OCLCQ  |d W2U  |d DKC  |d OCLCQ  |d ZHM  |d OCLCQ  |d XFF  |d OCLCO  |d INARC  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
016 7 |a 000042763595  |2 AU 
019 |a 244320213  |a 261067129  |a 320972221  |a 441454976  |a 605672514  |a 613472363  |a 648353867  |a 739154583  |a 756429771  |a 880103840  |a 961590987  |a 962656058  |a 1058082043  |a 1058460136  |a 1067007907  |a 1097284837  |a 1110740115 
020 |a 9780387743165 
020 |a 0387743162 
020 |a 9780387743172 
020 |a 0387743170 
024 7 |a 10.1007/978-0-387-74317-2  |2 doi 
029 1 |a AU@  |b 000043372285 
029 1 |a CDX  |b 7774082 
029 1 |a DEBBG  |b BV044129107 
029 1 |a DEBSZ  |b 280575815 
029 1 |a DEBSZ  |b 396169082 
029 1 |a HEBIS  |b 198447698 
029 1 |a NLGGC  |b 382147162 
029 1 |a NZ1  |b 12436829 
029 1 |a DKDLA  |b 820120-katalog:999904585705765 
035 |a (OCoLC)233971424  |z (OCoLC)244320213  |z (OCoLC)261067129  |z (OCoLC)320972221  |z (OCoLC)441454976  |z (OCoLC)605672514  |z (OCoLC)613472363  |z (OCoLC)648353867  |z (OCoLC)739154583  |z (OCoLC)756429771  |z (OCoLC)880103840  |z (OCoLC)961590987  |z (OCoLC)962656058  |z (OCoLC)1058082043  |z (OCoLC)1058460136  |z (OCoLC)1067007907  |z (OCoLC)1097284837  |z (OCoLC)1110740115 
037 |a 978-0-387-74316-5  |b Springer  |n http://www.springerlink.com 
042 |a pcc 
050 4 |a QA274.23  |b .K68 2008 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 22 
084 |a O211. 63  |2 clc 
049 |a UAMI 
100 1 |a Kotelenez, P.  |q (Peter),  |d 1943-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjrT9MkcYkfh7BC6j38Qv3 
245 1 0 |a Stochastic ordinary and stochastic partial differential equations :  |b transition from microscopic to macroscopic equations /  |c Peter Kotelenez. 
260 |a New York :  |b Springer Science+Business Media,  |c ©2008. 
300 |a 1 online resource (x, 458 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastic modelling and applied probability ;  |v 58 
504 |a Includes bibliographical references (pages 445-458) and index. 
505 0 |a pt. I. From Microscopic Dynamics to Mesoscopic Kinematics -- 1. Heuristics: Microscopic Model and Space-Time Scales -- 2. Deterministic Dynamics in a Lattice Model and a Mesoscopic (Stochastic) Limit -- 3. Proof of the Mesoscopic Limit Theorem -- pt. II. Mesoscopic A: Stochastic Ordinary Differential Equations -- 4. Stochastic Ordinary Differential Equations: Existence, Uniqueness, and Flows Properties -- 5. Qualitative Behavior of Correlated Brownian Motions -- 6. Proof of the Flow Property -- 7. Comments on SODEs: A Comparison with Other Approaches -- pt. III. Mesoscopic B: Stochastic Partial Differential Equations -- 8. Stochastic Partial Differential Equations: Finite Mass and Extensions -- 9. Stochastic Partial Differential Equations: Infinite Mass -- 10. Stochastic Partial Differential Equations: Homogeneous and Isotropic Solutions -- 11. Proof of Smoothness, Integrability, and Ito's Formula -- 12. Proof of Uniqueness -- 13. Comments on Other Approaches to SPDEs -- pt. IV. Macroscopic: Deterministic Partial Differential Equations -- 14. Partial Differential Equations as a Macroscopic Limit -- pt. V. General Appendix -- 15. Appendix. 
520 |a This book provides the first rigorous derivation of mesoscopic and macroscopic equations from a deterministic system of microscopic equations. The microscopic equations are cast in the form of a deterministic (Newtonian) system of coupled nonlinear oscillators for N large particles and infinitely many small particles. The mesoscopic equations are stochastic ordinary differential equations (SODEs) and stochastic partial differential equatuions (SPDEs), and the macroscopic limit is described by a parabolic partial differential equation. A detailed analysis of the SODEs and (quasi-linear) SPDEs is presented. Semi-linear (parabolic) SPDEs are represented as first order stochastic transport equations driven by Stratonovich differentials. The time evolution of correlated Brownian motions is shown to be consistent with the depletion phenomena experimentally observed in colloids. A covariance analysis of the random processes and random fields as well as a review section of various approaches to SPDEs are also provided. An extensive appendix makes the book accessible to both scientists and graduate students who may not be specialized in stochastic analysis. Probabilists, mathematical and theoretical physicists as well as mathematical biologists and their graduate students will find this book useful. Peter Kotelenez is a professor of mathematics at Case Western Reserve University in Cleveland, Ohio. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Stochastic differential equations. 
650 0 |a Stochastic partial differential equations. 
650 6 |a Équations différentielles stochastiques. 
650 6 |a Équations aux dérivées partielles stochastiques. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 0 7 |a Stochastic partial differential equations.  |2 cct 
650 0 7 |a Équations différentielles stochastiques.  |2 cct 
650 0 7 |a Équations aux dérivées partielles stochastiques.  |2 cct 
650 0 7 |a Stochastic differential equations.  |2 cct 
650 0 7 |a Ecuaciones diferenciales estocásticas  |2 embucm 
650 7 |a Stochastic differential equations  |2 fast 
650 7 |a Stochastic partial differential equations  |2 fast 
758 |i has work:  |a Stochastic ordinary and stochastic partial differential equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFPv7Q8dkrKYgwHjJxXPQq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kotelenez, P. (Peter), 1943-  |t Stochastic ordinary and stochastic partial differential equations.  |d New York : Springer Science+Business Media, ©2008  |z 9780387743165  |z 0387743162  |w (DLC) 2007940371  |w (OCoLC)172984133 
830 0 |a Stochastic modelling and applied probability ;  |v 58. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=337049  |z Texto completo 
938 |a Internet Archive  |b INAR  |n stochasticordina0000kote 
938 |a Coutts Information Services  |b COUT  |n 7774082 
938 |a EBL - Ebook Library  |b EBLB  |n EBL337049 
938 |a ebrary  |b EBRY  |n ebr10217672 
938 |a EBSCOhost  |b EBSC  |n 261484 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 114053 
938 |a YBP Library Services  |b YANK  |n 2808560 
994 |a 92  |b IZTAP