Cargando…

Approximations and endomorphism algebras of modules /

Provides a treatment of two important parts of contemporary module theory: approximations of modules and their applications, notably to infinite dimensional tilting theory, and realizations of algebras as endomorphism algebras of groups and modules. This monograph starts from basic facts and gradual...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Göbel, R. (Rüdiger), 1940-
Otros Autores: Trlifaj, Jan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : Walter de Gruyter, 2006.
Colección:De Gruyter expositions in mathematics ; 41.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn228144656
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 060602s2006 gw ob 001 0 eng d
010 |a  2006018289 
040 |a Nz  |b eng  |e pn  |c UV0  |d OCLCG  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d OCLCQ  |d DKDLA  |d MERUC  |d CCO  |d E7B  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCQ  |d AZK  |d LOA  |d OCLCQ  |d COCUF  |d MOR  |d PIFBR  |d ZCU  |d OCLCQ  |d U3W  |d STF  |d WRM  |d NRAMU  |d CRU  |d ICG  |d VTS  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCL 
066 |c (S 
015 |a 06,A39,0766  |2 dnb 
015 |a 06,N21,0804  |2 dnb 
019 |a 123294653  |a 154695890  |a 228144657  |a 473848261  |a 476020819  |a 481826895  |a 560245260  |a 647638144  |a 888556887  |a 935261822  |a 961527058  |a 962656625  |a 1055364733  |a 1058010735  |a 1066583581  |a 1081211436  |a 1228552187 
020 |a 9783110199727  |q (electronic bk.) 
020 |a 3110199726  |q (electronic bk.) 
020 |z 9783110110791  |q (alk. paper) 
020 |z 3110110792  |q (alk. paper) 
024 8 |a 2447422 
029 0 |a NZ1  |b 12046687 
029 1 |a AU@  |b 000048762787 
029 1 |a AU@  |b 000051574484 
029 1 |a AU@  |b 000053233948 
029 1 |a DEBBG  |b BV043160915 
029 1 |a DEBBG  |b BV044121394 
029 1 |a DEBSZ  |b 422240710 
029 1 |a DEBSZ  |b 430365047 
029 1 |a GBVCP  |b 587989807 
029 1 |a GBVCP  |b 802573444 
035 |a (OCoLC)228144656  |z (OCoLC)123294653  |z (OCoLC)154695890  |z (OCoLC)228144657  |z (OCoLC)473848261  |z (OCoLC)476020819  |z (OCoLC)481826895  |z (OCoLC)560245260  |z (OCoLC)647638144  |z (OCoLC)888556887  |z (OCoLC)935261822  |z (OCoLC)961527058  |z (OCoLC)962656625  |z (OCoLC)1055364733  |z (OCoLC)1058010735  |z (OCoLC)1066583581  |z (OCoLC)1081211436  |z (OCoLC)1228552187 
050 4 |a QA247  |b .G63 2006eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.42  |2 22 
084 |a 510  |2 sdnb 
084 |a SK 150  |2 rvk 
084 |a SK 230  |2 rvk 
084 |a SK 820  |2 rvk 
049 |a UAMI 
100 1 |a Göbel, R.  |q (Rüdiger),  |d 1940-  |1 https://id.oclc.org/worldcat/entity/E39PBJk94xMx9tqb8yqq7vxxDq 
245 1 0 |a Approximations and endomorphism algebras of modules /  |c by Rüdiger Göbel and Jan Trlifaj. 
260 |a Berlin ;  |a New York :  |b Walter de Gruyter,  |c 2006. 
300 |a 1 online resource (xxiv, 640 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a De Gruyter expositions in mathematics,  |x 0938-6572 ;  |v 41 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a Provides a treatment of two important parts of contemporary module theory: approximations of modules and their applications, notably to infinite dimensional tilting theory, and realizations of algebras as endomorphism algebras of groups and modules. This monograph starts from basic facts and gradually develops the theory to its present frontiers. 
505 0 |a Chapter 1; 1.1 S-completions; 1.2 Pure-injective modules; 1.3 Locally projective modules; 1.4 Factors of products and slender modules; 1.5 Slender modules over Dedekind domains; Chapter 2; 2.1 Preenvelopes and precovers; 2.2 Cotorsion pairs and Tor-pairs; 2.3 Minimal approximations; Chapter 3; 3.1 Ext and direct limits; 3.2 The variety of complete cotorsion pairs; 3.3 Ext and inverse limits; Chapter 4; 4.1 Approximations by modules of finite homological di-mensions; 4.2 Hill Lemma and Kaplansky Theorem for cotorsion pairs; 4.3 Closure properties providing for completeness. 
505 8 |6 880-01  |a 8.2 1-cotilting modules and cotilting torsion-free classesChapter 9; 9.1 Survey of prediction principles using ZFC and more; 9.2 The Black Boxes; 9.3 The Shelah Elevator; Chapter 10; 10.1 Completeness of cotorsion pairs under the Diamond Principle; 10.2 Uniformization and cotorsion pairs not generated by a set; Chapter 11; 11.1 Ultra-cotorsion-free modules and the Strong Black Box; 11.2 Rational cotorsion pairs; 11.3 Embedding posets into the lattice of cotorsion pairs; Chapter 12; 12.1 Realizing algebras of size ≤ 2ℵ; 12.2 ℵ1-free modules of cardinality ℵ 
505 8 |a 12.3 Realizing all cotorsion-free algebras12.4 Algebras of row-and-column-finite matrices; Chapter 13; 13.1 Classical; 13.2 Constructing torsion-free, reduced of rank d"25! 13.3; 13.4; 13.5 Discussing 5!-free; 13.6 Mixed; 13.7; 13.8 Generalized; 13.9 Model theory for generalized; 13.10 Constructing proper generalized; Chapter 14; 14.1 The five-submodule theorem, an easy application of the elevator; 14.2 The four-submodule theorem, a harder case; 14.3 A discussion of representations of posets; 14.4 Absolutely indecomposable modules; 14.5 Passing to R-modules. 
505 8 |a 14.6 A topological realization from Theorem 14.2.12Chapter 15; 15.1 Leavitt type rings: the discrete case; 15.2 Automorphism groups of torsion-free abelian groups; 15.3 Algebras with a Hausdorff topology; 15.4 Realizing particular algebras as endomorphism al-gebras. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Modules (Algebra) 
650 0 |a Moduli theory. 
650 0 |a Approximation theory. 
650 6 |a Modules (Algèbre) 
650 6 |a Théorie des modules. 
650 6 |a Théorie de l'approximation. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Approximation theory  |2 fast 
650 7 |a Modules (Algebra)  |2 fast 
650 7 |a Moduli theory  |2 fast 
700 1 |a Trlifaj, Jan. 
758 |i has work:  |a Approximations and endomorphism algebras of modules (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFXwHk9R93v8gFBDxJkJjC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Göbel, R. (Rüdiger), 1940-  |t Approximations and endomorphism algebras of modules.  |d Berlin ; New York : Walter de Gruyter, 2006  |w (DLC) 2006018289 
830 0 |a De Gruyter expositions in mathematics ;  |v 41.  |x 0938-6572 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=275298  |z Texto completo 
880 8 |6 505-01/(S  |a 4.4 Matlis cotorsion and strongly flat modules4.5 The closure of a cotorsion pair; Chapter 5; 5.1 Tilting modules; 5.2 Classes of finite type; 5.3 Injectivity properties of tilting modules; Chapter 6; 6.1 Tilting torsion classes; 6.2 The structure of tilting modules and classes over par-ticular rings; 6.3 Matlis localizations; Chapter 7; 7.1 Finitistic dimension conjectures and the tilting mod-ule; 7.2 A formula for the little finitistic dimension of right artinian rings; 7.3 Artinian rings with P <ω contravariantly finite; Chapter 8; 8.1 Cotilting classes and the classes of cofinite type. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25307618 
938 |a EBL - Ebook Library  |b EBLB  |n EBL275298 
938 |a ebrary  |b EBRY  |n ebr10154725 
938 |a EBSCOhost  |b EBSC  |n 174369 
938 |a YBP Library Services  |b YANK  |n 2548561 
994 |a 92  |b IZTAP