Principal manifolds for data visualization and dimension reduction /
In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SO...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin :
Springer,
2007.
|
Colección: | Lecture notes in computational science and engineering ;
58. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Matter; Developments and Applications of Nonlinear Principal Component Analysis
- a Review; Nonlinear Principal Component Analysis: Neural Network Models and Applications; Learning Nonlinear Principal Manifolds by Self-Organising Maps; Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization; Topology-Preserving Mappings for Data Visualisation; The Iterative Extraction Approach to Clustering; Representing Complex Data Using Localized Principal Components with Application to Astronomical Data.