Principal manifolds for data visualization and dimension reduction /
In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SO...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | Gorbanʹ, A. N. (Aleksandr Nikolaevich) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin :
Springer,
2007.
|
Colección: | Lecture notes in computational science and engineering ;
58. |
Temas: | |
Acceso en línea: | Texto completo |
Ejemplares similares
-
Constrained principal component analysis and related techniques /
por: Takane, Yoshio
Publicado: (2014) -
Principal component analysis : methods, applications and technology /
Publicado: (2017) -
Constrained Principal Component Analysis and Related Techniques /
por: Takane, Yoshio
Publicado: (2016) -
An Introduction to Envelope Models and Methods : Dimension Reduction for Efficient Estimation in Multivariate Statistics.
por: Cook, R. Dennis
Publicado: (2018) -
Multivariate statistical methods in quality management /
por: Yang, Kai
Publicado: (2004)