Principal manifolds for data visualization and dimension reduction /
In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SO...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin :
Springer,
2007.
|
Colección: | Lecture notes in computational science and engineering ;
58. |
Temas: | |
Acceso en línea: | Texto completo |