Cargando…

Principal manifolds for data visualization and dimension reduction /

In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SO...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Gorbanʹ, A. N. (Aleksandr Nikolaevich)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Springer, 2007.
Colección:Lecture notes in computational science and engineering ; 58.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn213093186
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 080307s2007 gw a ob 001 0 eng d
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d GW5XE  |d WAU  |d YNG  |d NRU  |d OCLCQ  |d EBLCP  |d OCLCO  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d NUI  |d N$T  |d CEF  |d E7B  |d ISOBC  |d IDEBK  |d A7U  |d SLY  |d YDXCP  |d DKDLA  |d COO  |d OCLCQ  |d LOA  |d COCUF  |d VT2  |d Z5A  |d MOR  |d LIP  |d PIFAG  |d ZCU  |d OTZ  |d OCLCQ  |d MERUC  |d ESU  |d OCLCQ  |d STF  |d VTS  |d OCLCQ  |d U3W  |d AU@  |d OCLCQ  |d ICG  |d CUY  |d YOU  |d W2U  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d S9M  |d OCLCL 
019 |a 260242139  |a 288266204  |a 319895492  |a 402385527  |a 646748888  |a 739140321  |a 746946599  |a 767210990  |a 846620988  |a 880116733  |a 941861308  |a 961576597  |a 962686220  |a 965990922  |a 974149447  |a 985042869  |a 988418885  |a 990522470  |a 990540930  |a 992037639  |a 994688691  |a 1005806021  |a 1007562161  |a 1012057071  |a 1044226383  |a 1056375682  |a 1074215119  |a 1087468684 
020 |a 9783540737506 
020 |a 3540737502 
020 |a 9783540737490 
020 |a 3540737499 
024 7 |a 10.1007/978-3-540-73750-6  |2 doi 
029 1 |a AU@  |b 000048701788 
029 1 |a AU@  |b 000053294674 
029 1 |a DEBBG  |b BV044129125 
029 1 |a DEBSZ  |b 271685905 
029 1 |a DEBSZ  |b 396170234 
029 1 |a DEBSZ  |b 430476329 
029 1 |a DKDLA  |b 820120-katalog:000662825 
029 1 |a NLGGC  |b 382139054 
029 1 |a NZ1  |b 12055305 
029 1 |a NZ1  |b 15195501 
029 1 |a DKDLA  |b 820120-katalog:999909674105765 
035 |a (OCoLC)213093186  |z (OCoLC)260242139  |z (OCoLC)288266204  |z (OCoLC)319895492  |z (OCoLC)402385527  |z (OCoLC)646748888  |z (OCoLC)739140321  |z (OCoLC)746946599  |z (OCoLC)767210990  |z (OCoLC)846620988  |z (OCoLC)880116733  |z (OCoLC)941861308  |z (OCoLC)961576597  |z (OCoLC)962686220  |z (OCoLC)965990922  |z (OCoLC)974149447  |z (OCoLC)985042869  |z (OCoLC)988418885  |z (OCoLC)990522470  |z (OCoLC)990540930  |z (OCoLC)992037639  |z (OCoLC)994688691  |z (OCoLC)1005806021  |z (OCoLC)1007562161  |z (OCoLC)1012057071  |z (OCoLC)1044226383  |z (OCoLC)1056375682  |z (OCoLC)1074215119  |z (OCoLC)1087468684 
037 |a 978-3-540-73749-0  |b Springer  |n http://www.springerlink.com 
050 4 |a QA278.5  |b .P75 2007eb 
072 7 |a MAT  |x 013000  |2 bisacsh 
072 7 |a TJFM  |2 bicssc 
082 0 4 |a 519.5354  |2 22 
084 |a C815  |2 clc 
049 |a UAMI 
245 0 0 |a Principal manifolds for data visualization and dimension reduction /  |c Alexander N. Gorban [and others], editors. 
260 |a Berlin :  |b Springer,  |c 2007. 
300 |a 1 online resource (xxiii, 334 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Lecture notes in computational science and engineering ;  |v 58 
504 |a Includes bibliographical references and index. 
505 0 |a Front Matter; Developments and Applications of Nonlinear Principal Component Analysis -- a Review; Nonlinear Principal Component Analysis: Neural Network Models and Applications; Learning Nonlinear Principal Manifolds by Self-Organising Maps; Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization; Topology-Preserving Mappings for Data Visualisation; The Iterative Extraction Approach to Clustering; Representing Complex Data Using Localized Principal Components with Application to Astronomical Data. 
520 |a In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SOM), etc. The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology pre. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Principal components analysis. 
650 0 |a Statistics  |x Graphic methods. 
650 0 |a Dimension reduction (Statistics) 
650 6 |a Analyse en composantes principales. 
650 6 |a Statistique  |x Méthodes graphiques. 
650 6 |a Réduction de dimension (Statistique) 
650 7 |a MATHEMATICS  |x Graphic Methods.  |2 bisacsh 
650 0 7 |a Principal components analysis.  |2 cct 
650 0 7 |a Statistics  |x Graphic methods.  |2 cct 
650 0 7 |a Mathematical Methods in Physics.  |2 cct 
650 0 7 |a Numerical and Computational Methods in Engineering.  |2 cct 
650 7 |a Estadística  |2 embne 
650 0 7 |a Análisis en componentes principales  |2 embucm 
650 7 |a Dimension reduction (Statistics)  |2 fast 
650 7 |a Principal components analysis  |2 fast 
650 7 |a Statistics  |x Graphic methods  |2 fast 
700 1 |a Gorbanʹ, A. N.  |q (Aleksandr Nikolaevich)  |1 https://id.oclc.org/worldcat/entity/E39PBJyMmDt83XXFjyVTPtpXVC 
758 |i has work:  |a Principal manifolds for data visualization and dimension reduction (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGDCTHwYckxpC44yGbJxDq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 |t Principal manifolds for data visualization and dimension reduction.  |w (OCoLC)166372536 
830 0 |a Lecture notes in computational science and engineering ;  |v 58. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=337417  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL337417 
938 |a ebrary  |b EBRY  |n ebr10230379 
938 |a EBSCOhost  |b EBSC  |n 256178 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 107035 
938 |a YBP Library Services  |b YANK  |n 2809553 
994 |a 92  |b IZTAP