Principal manifolds for data visualization and dimension reduction /
In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SO...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin :
Springer,
2007.
|
Colección: | Lecture notes in computational science and engineering ;
58. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | In 1901, Karl Pearson invented Principal Component Analysis (PCA). Since then, PCA serves as a prototype for many other tools of data analysis, visualization and dimension reduction: Independent Component Analysis (ICA), Multidimensional Scaling (MDS), Nonlinear PCA (NLPCA), Self Organizing Maps (SOM), etc. The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology pre. |
---|---|
Descripción Física: | 1 online resource (xxiii, 334 pages) : illustrations (some color) |
Bibliografía: | Includes bibliographical references and index. |
ISBN: | 9783540737506 3540737502 9783540737490 3540737499 |