Cargando…

Graph-theoretic techniques for web content mining /

This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Schenker, Adam
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific, ©2005.
Colección:Series in machine perception and artificial intelligence ; v. 62.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn185300560
003 OCoLC
005 20240329122006.0
006 m o d
007 cr zn|||||||||
008 071231s2005 si a ob 001 0 eng d
040 |a NTG  |b eng  |e pn  |c NTG  |d EBLCP  |d OCLCQ  |d MHW  |d B24X7  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d ZCU  |d LIV  |d OCLCQ  |d MERUC  |d U3W  |d OCLCQ  |d ICG  |d OCLCQ  |d COO  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d LEAUB  |d BRF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 475976217  |a 815570763  |a 1086488953 
020 |a 9812563393 
020 |a 9789812563392 
020 |a 9789812569455  |q (electronic bk.) 
020 |a 9812569456  |q (electronic bk.) 
020 |a 1281372579 
020 |a 9781281372574 
029 1 |a AU@  |b 000048778811 
029 1 |a AU@  |b 000053241799 
029 1 |a AU@  |b 000058361293 
029 1 |a DEBBG  |b BV044083450 
029 1 |a DEBSZ  |b 379295474 
029 1 |a DEBSZ  |b 445562838 
029 1 |a NZ1  |b 12041483 
035 |a (OCoLC)185300560  |z (OCoLC)475976217  |z (OCoLC)815570763  |z (OCoLC)1086488953 
050 4 |a QA76.9.D343  |b G755 2005eb 
072 7 |a PBV  |2 bicssc 
082 0 4 |a 006.312  |2 22 
049 |a UAMI 
245 0 0 |a Graph-theoretic techniques for web content mining /  |c Adam Schenker [and others]. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific,  |c ©2005. 
300 |a 1 online resource (249 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 62 
500 |a Title from title screen. 
504 |a Includes bibliographical references and index. 
520 |a This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. 
505 0 |a Preface; Contents; Chapter 1 Introduction to Web Mining; Chapter 2 Graph Similarity Techniques; Chapter 3 Graph Models for Web Documents; Chapter 4 Graph-Based Clustering; Chapter 5 Graph-Based Classification; Chapter 6 The Graph Hierarchy Construction Algorithm for Web Search Clustering; Chapter 7 Conclusions and Future Work; Appendix A Graph Examples; Appendix B List of Stop Words; Bibliography; Index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Data mining. 
650 0 |a Graph theory  |x Data processing. 
650 0 |a Algorithms. 
650 0 |a Multidimensional scaling. 
650 0 |a Computer algorithms. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Algorithmes. 
650 6 |a Échelle multidimensionnelle. 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Algorithms  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Graph theory  |x Data processing  |2 fast 
650 7 |a Multidimensional scaling  |2 fast 
700 1 |a Schenker, Adam. 
740 0 |a ITPro. 
758 |i has work:  |a Graph-theoretic techniques for web content mining (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFPJ7jM8W4DRkBCYhGRcpq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9789812563392 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 62. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=259288  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24683746 
938 |a Books 24x7  |b B247  |n bks00017239 
938 |a EBL - Ebook Library  |b EBLB  |n EBL259288 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 137257 
994 |a 92  |b IZTAP