Cargando…

Switchmode RF power amplifiers /

A majority of people now have a digital mobile device whether it be a cell phone, laptop, or blackberry. Now that we have the mobility we want it to be more versatile and dependable; RF power amplifiers accomplish just that. These amplifiers take a small input and make it stronger and larger creatin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grebennikov, Andrei, 1956-
Otros Autores: Sokal, Nathan O.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier/Newnes, ©2007.
Colección:Communications engineering series.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Cover
  • Table of Contents
  • About Andrei Grebennikov
  • About Nathan O. Sokal
  • Preface
  • Acknowledgments
  • Chapter 1: Power-Amplifier Design Principles
  • 1.1 Spectral-Domain Analysis
  • 1.2 Basic Classes of Operation: A, AB, B, and C
  • 1.3 Active Device Models
  • 1.4 High-Frequency Conduction Angle
  • 1.5 Nonlinear Effect of Collector Capacitance
  • 1.6 Push-Pull Power Amplifiers
  • 1.7 Power Gain and Stability
  • 1.8 Parametric Oscillations
  • References
  • Chapter 2: Class-D Power Amplifiers
  • 2.1 Switched-Mode Power Amplifiers with Resistive Load
  • 2.2 Complementary Voltage-Switching Configuration
  • 2.3 Transformer-Coupled Voltage-Switching Configuration
  • 2.4 Symmetrical Current-Switching Configuration
  • 2.5 Transformer-Coupled Current-Switching Configuration
  • 2.6 Voltage-Switching Configuration with Reactive Load
  • 2.7 Drive and Transition Time
  • 2.8 Practical Class-D Power Amplifier Implementation
  • References
  • Chapter 3: Class-F Power Amplifiers
  • 3.1 Biharmonic Operation Mode
  • 3.2 Idealized Class-F Mode
  • 3.3 Class F with Maximally Flat Waveforms
  • 3.4 Class F with Quarter-wave Transmission Line
  • 3.5 Effect of Saturation Resistance and Shunt Capacitance
  • 3.6 Load Networks with Lumped Elements
  • 3.7 Load Networks with Transmission Lines
  • 3.8 LDMOSFET Power-Amplifier Design Examples
  • 3.9 Practical RF and Microwave Class-F Power Amplifiers
  • References
  • Chapter 4: Inverse Class F
  • 4.1 Biharmonic Operation Mode
  • 4.2 Idealized Inverse Class-F Mode
  • 4.3 Inverse Class F with Quarter-wave Transmission Line
  • 4.4 Load Networks with Lumped Elements
  • 4.5 Load Networks with Transmission Lines
  • 4.6 LDMOSFET Power-Amplifier Design Examples
  • 4.7 Practical Implementation
  • References
  • Chapter 5: Class E with Shunt Capacitance
  • 5.1 Effect of Detuned Resonant Circuit
  • 5.2 Load Network with Shunt Capacitor and Series Filter
  • 5.3 Matching with Standard Load
  • 5.4 Effect of Saturation Resistance
  • 5.5 Driving Signal and Finite Switching Time
  • 5.6 Effect of Nonlinear Shunt Capacitance
  • 5.7 Push-Pull Operation Mode
  • 5.8 Load Network with Transmission Lines
  • 5.9 Practical RF and Microwave Class-E Power Amplifiers and Applications
  • References
  • Chapter 6: Class E with Finite dc-Feed Inductance
  • 6.1 Class E with One Capacitor and One Inductor
  • 6.2 Generalized Class-E Load Network with Finite dc-Feed Inductance
  • 6.3 Subharmonic Class E
  • 6.4 Parallel-Circuit Class E
  • 6.5 Even-Harmonic Class E
  • 6.6 Effect of Bondwire Inductance
  • 6.7 Load Network with Transmission Lines
  • 6.8 Broadband Class E
  • 6.9 Power Gain
  • 6.10 CMOS Class-E Power Amplifiers
  • References
  • Chapter 7: Class E with Quarter-wave Transmission Line
  • 7.1 Load Network with Parallel Quarter-wave Line
  • 7.2 Optimum Load Network Parameters
  • 7.3 Load Network with Zero Series Reactance
  • 7.4 Matching Circuit with Lumped Elements
  • 7.5 Matching Circui.