Kernel methods for pattern analysis /
The kernel functions methodology described here provides a powerful and unified framework for disciplines ranging from neural networks and pattern recognition to machine learning and data mining. This book provides practitioners with a large toolkit of algorithms, kernels and solutions ready to be i...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; New York :
Cambridge University Press,
2004.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Half-title; Title; Copyright; Contents; Code fragments; Preface; 1 Pattern analysis; 2 Kernel methods: an overview; 3 Properties of kernels; 4 Detecting stable patterns; 5 Elementary algorithms in feature space; 6 Pattern analysis using eigen-decompositions; 7 Pattern analysis using convex optimisation; 8 Ranking, clustering and data visualisation; 9 Basic kernels and kernel types; 10 Kernels for text; 11 Kernels for structured data: strings, trees, etc.; 12 Kernels from generative models; Appendix A Proofs omitted from the main text; A.1 Proof of McDiarmid's theorem.