|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn140082330 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
070607s2006 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d N$T
|d YDXCP
|d IDEBK
|d UBY
|d SFB
|d YNG
|d COO
|d LGG
|d OCLCQ
|d DKDLA
|d CCO
|d E7B
|d FVL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d CUS
|d OCLCF
|d OCLCQ
|d MEAUC
|d EBLCP
|d OCLCQ
|d AZK
|d LOA
|d STBDS
|d CNNOR
|d MOR
|d PIFAG
|d PIFBR
|d ZCU
|d OCLCQ
|d MERUC
|d OCLCQ
|d WY@
|d U3W
|d LUE
|d STF
|d BRL
|d WRM
|d ICG
|d DEBBG
|d INT
|d VT2
|d OCLCQ
|d AU@
|d OCLCQ
|d WYU
|d YOU
|d OCLCQ
|d A6Q
|d DKC
|d OCLCQ
|d UKCRE
|d UCW
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d ANO
|d OCLCQ
|d OCLCO
|d OCLCL
|
016 |
7 |
|
|a 013402783
|2 Uk
|
019 |
|
|
|a 156808864
|a 185035698
|a 191924166
|a 243602258
|a 271200901
|a 319064484
|a 427855611
|a 473861344
|a 567997709
|a 648167236
|a 722547253
|a 728033596
|a 748542773
|a 814487629
|a 823858315
|a 823928504
|a 824117473
|a 824170275
|a 888651896
|a 912933053
|a 922952634
|a 961573341
|a 962609922
|a 966220135
|a 988463058
|a 991949545
|a 992003810
|a 1035657543
|a 1037490848
|a 1037924437
|a 1038654004
|a 1055372327
|a 1058125052
|a 1065096643
|a 1077933537
|a 1081247465
|a 1083558367
|a 1153540765
|a 1196348568
|
020 |
|
|
|a 9780191516351
|q (electronic bk.)
|
020 |
|
|
|a 019151635X
|q (electronic bk.)
|
020 |
|
|
|a 0199296863
|q (cased)
|
020 |
|
|
|a 9780199296866
|q (cased)
|
020 |
|
|
|a 9781429471169
|
020 |
|
|
|a 1429471166
|
020 |
|
|
|a 9780191711329
|
020 |
|
|
|a 0191711322
|
029 |
1 |
|
|a AU@
|b 000046164928
|
029 |
1 |
|
|a AU@
|b 000053240805
|
029 |
1 |
|
|a AU@
|b 000072971632
|
029 |
1 |
|
|a DEBBG
|b BV044094035
|
029 |
1 |
|
|a NZ1
|b 12062554
|
035 |
|
|
|a (OCoLC)140082330
|z (OCoLC)156808864
|z (OCoLC)185035698
|z (OCoLC)191924166
|z (OCoLC)243602258
|z (OCoLC)271200901
|z (OCoLC)319064484
|z (OCoLC)427855611
|z (OCoLC)473861344
|z (OCoLC)567997709
|z (OCoLC)648167236
|z (OCoLC)722547253
|z (OCoLC)728033596
|z (OCoLC)748542773
|z (OCoLC)814487629
|z (OCoLC)823858315
|z (OCoLC)823928504
|z (OCoLC)824117473
|z (OCoLC)824170275
|z (OCoLC)888651896
|z (OCoLC)912933053
|z (OCoLC)922952634
|z (OCoLC)961573341
|z (OCoLC)962609922
|z (OCoLC)966220135
|z (OCoLC)988463058
|z (OCoLC)991949545
|z (OCoLC)992003810
|z (OCoLC)1035657543
|z (OCoLC)1037490848
|z (OCoLC)1037924437
|z (OCoLC)1038654004
|z (OCoLC)1055372327
|z (OCoLC)1058125052
|z (OCoLC)1065096643
|z (OCoLC)1077933537
|z (OCoLC)1081247465
|z (OCoLC)1083558367
|z (OCoLC)1153540765
|z (OCoLC)1196348568
|
050 |
|
4 |
|a QC20.7.F67
|b H89 2006eb
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.35
|2 22
|
084 |
|
|
|a SK 240
|2 rvk
|
084 |
|
|
|a SK 320
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Huybrechts, Daniel,
|e author.
|
245 |
1 |
0 |
|a Fourier-Mukai transforms in algebraic geometry /
|c D. Huybrechts.
|
260 |
|
|
|a Oxford :
|b Clarendon Press,
|c 2006.
|
300 |
|
|
|a 1 online resource (viii, 307 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
380 |
|
|
|a Bibliography
|
490 |
1 |
|
|a Oxford mathematical monographs
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
8 |
|
|a This work is based on a course given at the Institut de Mathematiques de Jussieu, on the derived category of coherent sheaves on a smooth projective variety. It is aimed at students with a basic knowledge of algebraic geometry and contains full proofs and exercises that aid the reader.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Contents -- 1 Triangulated categories -- 1.1 Additive categories and functors -- 1.2 Triangulated categories and exact functors -- 1.3 Equivalences of triangulated categories -- 1.4 Exceptional sequences and orthogonal decompositions -- 2 Derived categories: a quick tour -- 2.1 Derived category of an abelian category -- 2.2 Derived functors -- 2.3 Spectral sequences -- 3 Derived categories of coherent sheaves -- 3.1 Basic structure -- 3.2 Spanning classes in the derived category -- 3.3 Derived functors in algebraic geometry -- 3.4 Grothendieck�Verdier duality
|
505 |
8 |
|
|a 4 Derived category and canonical bundle � I4.1 Ample (anti- )canonical bundle -- 4.2 Autoequivalences for ample (anti- )canonical bundle -- 4.3 Ample sequences in derived categories -- 5 Fourier�Mukai transforms -- 5.1 What it is and Orlov�s result -- 5.2 Passage to cohomology -- 6 Derived category and canonical bundle � II -- 6.1 Kodaira dimension under derived equivalence -- 6.2 Geometrical aspects of the Fourier�Mukai kernel -- 6.3 Nefness under derived equivalence -- 6.4 Derived equivalence versus birationality
|
505 |
8 |
|
|a 6.5 Recap: Kodaira dimension, canonical ring, etc. 7 Equivalence criteria for Fourier�Mukai transforms -- 7.1 Fully faithful -- 7.2 Equivalences -- 7.3 Canonical quotients -- 8 Spherical and exceptional objects -- 8.1 Autoequivalences induced by spherical objects -- 8.2 Braid group actions -- 8.3 Beilinson spectral sequence -- 8.4 They go together -- 9 Abelian varieties -- 9.1 Basic definitions and facts -- 9.2 The Poincaré bundle as a Fourier�Mukai kernel -- 9.3 Sl[Sub(2)]-action -- 9.4 Derived equivalences of abelian varieties
|
505 |
8 |
|
|a ""9.5 Autoequivalences of abelian varieties""""10 K3 surfaces""; ""10.1 Recap: K3 surfaces""; ""10.2 Derived equivalence of K3 surfaces""; ""10.3 Recap: Moduli spaces of sheaves""; ""11 Flips and flops""; ""11.1 Preparations: Closed embeddings and blow-ups""; ""11.2 Derived categories under blow-up""; ""11.3 The standard flip""; ""11.4 The Mukai flop""; ""12 Derived categories of surfaces""; ""12.1 Recap: Enriques classification of algebraic surfaces""; ""12.2 Minimal surfaces with kod = â€?∞, 2""; ""12.3 Surfaces with torsion canonical bundle""; ""12.4 Properly elliptic surfaces""
|
505 |
8 |
|
|a 13 Where to go from here13.1 McKay correspondence for derived categories -- 13.2 Homological mirror symmetry -- 13.3 D-branes and stability conditions -- 13.4 Twisted derived categories -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- O -- P -- Q -- R -- S -- T -- Y
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Fourier transformations.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Fourier transformations
|2 fast
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
758 |
|
|
|i has work:
|a Fourier-Mukai transforms in algebraic geometry (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFGkKPkQ3xdjMpRHTkqYj3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Huybrechts, Daniel.
|t Fourier-Mukai transforms in algebraic geometry.
|d Oxford : Clarendon Press, 2006
|z 0199296863
|z 9780199296866
|w (DLC) 2006298244
|w (OCoLC)64097295
|
830 |
|
0 |
|a Oxford mathematical monographs.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3052126
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3052126
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10167524
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 192227
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 87026
|
938 |
|
|
|a Oxford University Press USA
|b OUPR
|n EDZ0000073166
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3379714
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11588179
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2768995
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2567332
|
994 |
|
|
|a 92
|b IZTAP
|