Cargando…

Fourier-Mukai transforms in algebraic geometry /

This work is based on a course given at the Institut de Mathematiques de Jussieu, on the derived category of coherent sheaves on a smooth projective variety. It is aimed at students with a basic knowledge of algebraic geometry and contains full proofs and exercises that aid the reader.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Huybrechts, Daniel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Clarendon Press, 2006.
Colección:Oxford mathematical monographs.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn140082330
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 070607s2006 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d N$T  |d YDXCP  |d IDEBK  |d UBY  |d SFB  |d YNG  |d COO  |d LGG  |d OCLCQ  |d DKDLA  |d CCO  |d E7B  |d FVL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d CUS  |d OCLCF  |d OCLCQ  |d MEAUC  |d EBLCP  |d OCLCQ  |d AZK  |d LOA  |d STBDS  |d CNNOR  |d MOR  |d PIFAG  |d PIFBR  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d WY@  |d U3W  |d LUE  |d STF  |d BRL  |d WRM  |d ICG  |d DEBBG  |d INT  |d VT2  |d OCLCQ  |d AU@  |d OCLCQ  |d WYU  |d YOU  |d OCLCQ  |d A6Q  |d DKC  |d OCLCQ  |d UKCRE  |d UCW  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d ANO  |d OCLCQ  |d OCLCO  |d OCLCL 
016 7 |a 013402783  |2 Uk 
019 |a 156808864  |a 185035698  |a 191924166  |a 243602258  |a 271200901  |a 319064484  |a 427855611  |a 473861344  |a 567997709  |a 648167236  |a 722547253  |a 728033596  |a 748542773  |a 814487629  |a 823858315  |a 823928504  |a 824117473  |a 824170275  |a 888651896  |a 912933053  |a 922952634  |a 961573341  |a 962609922  |a 966220135  |a 988463058  |a 991949545  |a 992003810  |a 1035657543  |a 1037490848  |a 1037924437  |a 1038654004  |a 1055372327  |a 1058125052  |a 1065096643  |a 1077933537  |a 1081247465  |a 1083558367  |a 1153540765  |a 1196348568 
020 |a 9780191516351  |q (electronic bk.) 
020 |a 019151635X  |q (electronic bk.) 
020 |a 0199296863  |q (cased) 
020 |a 9780199296866  |q (cased) 
020 |a 9781429471169 
020 |a 1429471166 
020 |a 9780191711329 
020 |a 0191711322 
029 1 |a AU@  |b 000046164928 
029 1 |a AU@  |b 000053240805 
029 1 |a AU@  |b 000072971632 
029 1 |a DEBBG  |b BV044094035 
029 1 |a NZ1  |b 12062554 
035 |a (OCoLC)140082330  |z (OCoLC)156808864  |z (OCoLC)185035698  |z (OCoLC)191924166  |z (OCoLC)243602258  |z (OCoLC)271200901  |z (OCoLC)319064484  |z (OCoLC)427855611  |z (OCoLC)473861344  |z (OCoLC)567997709  |z (OCoLC)648167236  |z (OCoLC)722547253  |z (OCoLC)728033596  |z (OCoLC)748542773  |z (OCoLC)814487629  |z (OCoLC)823858315  |z (OCoLC)823928504  |z (OCoLC)824117473  |z (OCoLC)824170275  |z (OCoLC)888651896  |z (OCoLC)912933053  |z (OCoLC)922952634  |z (OCoLC)961573341  |z (OCoLC)962609922  |z (OCoLC)966220135  |z (OCoLC)988463058  |z (OCoLC)991949545  |z (OCoLC)992003810  |z (OCoLC)1035657543  |z (OCoLC)1037490848  |z (OCoLC)1037924437  |z (OCoLC)1038654004  |z (OCoLC)1055372327  |z (OCoLC)1058125052  |z (OCoLC)1065096643  |z (OCoLC)1077933537  |z (OCoLC)1081247465  |z (OCoLC)1083558367  |z (OCoLC)1153540765  |z (OCoLC)1196348568 
050 4 |a QC20.7.F67  |b H89 2006eb 
072 7 |a MAT  |x 012010  |2 bisacsh 
082 0 4 |a 516.35  |2 22 
084 |a SK 240  |2 rvk 
084 |a SK 320  |2 rvk 
049 |a UAMI 
100 1 |a Huybrechts, Daniel,  |e author. 
245 1 0 |a Fourier-Mukai transforms in algebraic geometry /  |c D. Huybrechts. 
260 |a Oxford :  |b Clarendon Press,  |c 2006. 
300 |a 1 online resource (viii, 307 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
380 |a Bibliography 
490 1 |a Oxford mathematical monographs 
504 |a Includes bibliographical references and index. 
520 8 |a This work is based on a course given at the Institut de Mathematiques de Jussieu, on the derived category of coherent sheaves on a smooth projective variety. It is aimed at students with a basic knowledge of algebraic geometry and contains full proofs and exercises that aid the reader. 
588 0 |a Print version record. 
505 0 |a Contents -- 1 Triangulated categories -- 1.1 Additive categories and functors -- 1.2 Triangulated categories and exact functors -- 1.3 Equivalences of triangulated categories -- 1.4 Exceptional sequences and orthogonal decompositions -- 2 Derived categories: a quick tour -- 2.1 Derived category of an abelian category -- 2.2 Derived functors -- 2.3 Spectral sequences -- 3 Derived categories of coherent sheaves -- 3.1 Basic structure -- 3.2 Spanning classes in the derived category -- 3.3 Derived functors in algebraic geometry -- 3.4 Grothendieckâ€?Verdier duality 
505 8 |a 4 Derived category and canonical bundle â€? I4.1 Ample (anti- )canonical bundle -- 4.2 Autoequivalences for ample (anti- )canonical bundle -- 4.3 Ample sequences in derived categories -- 5 Fourierâ€?Mukai transforms -- 5.1 What it is and Orlovâ€?s result -- 5.2 Passage to cohomology -- 6 Derived category and canonical bundle â€? II -- 6.1 Kodaira dimension under derived equivalence -- 6.2 Geometrical aspects of the Fourierâ€?Mukai kernel -- 6.3 Nefness under derived equivalence -- 6.4 Derived equivalence versus birationality 
505 8 |a 6.5 Recap: Kodaira dimension, canonical ring, etc. 7 Equivalence criteria for Fourierâ€?Mukai transforms -- 7.1 Fully faithful -- 7.2 Equivalences -- 7.3 Canonical quotients -- 8 Spherical and exceptional objects -- 8.1 Autoequivalences induced by spherical objects -- 8.2 Braid group actions -- 8.3 Beilinson spectral sequence -- 8.4 They go together -- 9 Abelian varieties -- 9.1 Basic definitions and facts -- 9.2 The Poincaré bundle as a Fourierâ€?Mukai kernel -- 9.3 Sl[Sub(2)]-action -- 9.4 Derived equivalences of abelian varieties 
505 8 |a ""9.5 Autoequivalences of abelian varieties""""10 K3 surfaces""; ""10.1 Recap: K3 surfaces""; ""10.2 Derived equivalence of K3 surfaces""; ""10.3 Recap: Moduli spaces of sheaves""; ""11 Flips and flops""; ""11.1 Preparations: Closed embeddings and blow-ups""; ""11.2 Derived categories under blow-up""; ""11.3 The standard flip""; ""11.4 The Mukai flop""; ""12 Derived categories of surfaces""; ""12.1 Recap: Enriques classification of algebraic surfaces""; ""12.2 Minimal surfaces with kod = â€?∞, 2""; ""12.3 Surfaces with torsion canonical bundle""; ""12.4 Properly elliptic surfaces"" 
505 8 |a 13 Where to go from here13.1 McKay correspondence for derived categories -- 13.2 Homological mirror symmetry -- 13.3 D-branes and stability conditions -- 13.4 Twisted derived categories -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- O -- P -- Q -- R -- S -- T -- Y 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Fourier transformations. 
650 0 |a Geometry, Algebraic. 
650 6 |a Géométrie algébrique. 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a Fourier transformations  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
758 |i has work:  |a Fourier-Mukai transforms in algebraic geometry (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFGkKPkQ3xdjMpRHTkqYj3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Huybrechts, Daniel.  |t Fourier-Mukai transforms in algebraic geometry.  |d Oxford : Clarendon Press, 2006  |z 0199296863  |z 9780199296866  |w (DLC) 2006298244  |w (OCoLC)64097295 
830 0 |a Oxford mathematical monographs. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3052126  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3052126 
938 |a ebrary  |b EBRY  |n ebr10167524 
938 |a EBSCOhost  |b EBSC  |n 192227 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 87026 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0000073166 
938 |a YBP Library Services  |b YANK  |n 3379714 
938 |a YBP Library Services  |b YANK  |n 11588179 
938 |a YBP Library Services  |b YANK  |n 2768995 
938 |a YBP Library Services  |b YANK  |n 2567332 
994 |a 92  |b IZTAP