Cargando…

Introduction to precise numerical methods /

Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and referenc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aberth, Oliver
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Boston : Academic Press, ©2007.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn137284559
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 070531s2007 ne a ob 001 0 eng d
010 |a  2007000712 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d BTCTA  |d OCLCQ  |d E7B  |d UBY  |d REDDC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCO  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d LOA  |d OCLCO  |d COCUF  |d STF  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d ICG  |d INT  |d VT2  |d OCLCQ  |d AU@  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d UKCRE  |d OCLCQ  |d SGP  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d EZC 
019 |a 154684449  |a 505066930  |a 648163232  |a 960206691  |a 961620350  |a 962623398  |a 984784267  |a 988508469  |a 992032464  |a 1034954567  |a 1037763804  |a 1038567134  |a 1055387256  |a 1058164404  |a 1064881235  |a 1081257241  |a 1153549471  |a 1228551610 
020 |a 008047120X  |q (electronic bk. ;  |q Adobe Reader) 
020 |a 9780080471204  |q (electronic bk. ;  |q Adobe Reader) 
020 |z 9780123738592  |q (hbk. ;  |q alk. paper) 
020 |z 0123738598  |q (hbk. ;  |q alk. paper) 
029 1 |a AU@  |b 000051562719 
029 1 |a DEBBG  |b BV044123044 
029 1 |a DEBSZ  |b 430379153 
029 1 |a DEBSZ  |b 449090906 
029 1 |a NZ1  |b 14540090 
029 1 |a AU@  |b 000068926293 
035 |a (OCoLC)137284559  |z (OCoLC)154684449  |z (OCoLC)505066930  |z (OCoLC)648163232  |z (OCoLC)960206691  |z (OCoLC)961620350  |z (OCoLC)962623398  |z (OCoLC)984784267  |z (OCoLC)988508469  |z (OCoLC)992032464  |z (OCoLC)1034954567  |z (OCoLC)1037763804  |z (OCoLC)1038567134  |z (OCoLC)1055387256  |z (OCoLC)1058164404  |z (OCoLC)1064881235  |z (OCoLC)1081257241  |z (OCoLC)1153549471  |z (OCoLC)1228551610 
050 4 |a QA76.9.M35  |b A24 2007eb 
082 0 4 |a 518.0285  |2 22 
049 |a UAMI 
100 1 |a Aberth, Oliver. 
245 1 0 |a Introduction to precise numerical methods /  |c Oliver Aberth. 
260 |a Amsterdam ;  |a Boston :  |b Academic Press,  |c ©2007. 
300 |a 1 online resource (xii, 252 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Acknowledgments; 1 Introduction; 1.1 Open-source software; 1.2 Calling up a program; 1.3 Log files and print files; 1.4 More on log files; 1.5 The tilde notation for printed answers; 2 Computer Arithmetics; 2.1 Floating-point arithmetic; 2.2 Variable precision floating-point arithmetic; 2.3 Interval arithmetic; 2.4 Range arithmetic; 2.5 Practical range arithmetic; 2.6 Interval arithmetic notation; 2.7 Computing standard functions in range arithmetic; 2.8 Rational arithmetic; Software Exercises A; Notes and References; 3 Classification of Numerical Computation Problems; 3.1 A knotty problem 
505 8 |a 3.2 The impossibility of untying the knot 3.3 Repercussions from nonsolvable problem 3.1; 3.4 Some solvable and nonsolvable decimal place problems; 3.5 The solvable problems handled by calc; 3.6 Another nonsolvable problem; 3.7 The trouble with discontinuous functions; Notes and References; 4 Real-Valued Functions; 4.1 Elementary functions; Software Exercises B; 5 Computing Derivatives; 5.1 Power series of elementary functions; 5.2 An example of series evaluation; 5.3 Power series for elementary functions of several variables; 5.4 A more general method of generating power series 
505 8 |a 5.5 The demo program derivSoftware Exercises C; Notes and References; 6 Computing Integrals; 6.1 Computing a definite integral; 6.2 Formal interval arithmetic; 6.3 The demo program integ for computing ordinary definite integrals; 6.4 Taylor's remainder formula generalized; 6.5 The demo program mulint for higher dimensional integrals; 6.6 The demo program imprint for computing improper integrals; Software Exercises D; Notes and References; 7 Finding Where a Function f(x) is Zero; 7.1 Obtaining a solvable problem; 7.2 Using interval arithmetic for the problem; 7.3 Newton's method 
505 8 |a 7.4 Order of convergence Software Exercises E; 8 Finding Roots of Polynomials; 8.1 Polynomials; 8.2 A bound for the roots of a polynomial; 8.3 The Bairstow method for finding roots of a real polynomial; 8.4 Bounding the error of a rational polynomial's root approximations; 8.5 Finding accurate roots for a rational or a real polynomial; 8.6 The demo program roots; Software Exercises F; Notes and References; 9 Solving n Linear Equations in n Unknowns; 9.1 Notation; 9.2 Computation problems; 9.3 A method for solving linear equations; 9.4 Computing determinants 
505 8 |a 9.5 Finding the inverse of a square matrix 9.6 The demo programs equat, r_equat, and c_equat; Software Exercises G; Notes and References; 10 Eigenvalue and Eigenvector Problems; 10.1 Finding a solution to Ax= 0 when det A= 0; 10.2 Eigenvalues and Eigenvector; 10.3 Companion matrices and Vandermonde matrices; 10.4 Finding eigenvalues and Eigenvector by Danilevsky's method; 10.5 Error bounds for Danilevsky's method; 10.6 Rational matrices; 10.7 The demo programs eigen, c_eigen, and r_eigen; Software Exercises H; 11 Problems of Linear Programming; 11.1 Linear algebra using rational arithmetic 
520 |a Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations of the various numerical methods· Two new types of numerical problems; accurately solving partial differential equations. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Numerical analysis  |x Data processing. 
650 6 |a Informatique  |x Mathématiques. 
650 6 |a Analyse numérique  |x Informatique. 
650 7 |a Computer science  |x Mathematics  |2 fast 
650 7 |a Numerical analysis  |x Data processing  |2 fast 
655 7 |a dissertations.  |2 aat 
655 7 |a Academic theses  |2 fast 
655 7 |a Academic theses.  |2 lcgft 
655 7 |a Thèses et écrits académiques.  |2 rvmgf 
758 |i has work:  |a Introduction to precise numerical methods (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGJd49frB69DH4kfbyCHbq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Aberth, Oliver.  |t Introduction to precise numerical methods.  |d Amsterdam ; Boston : Academic Press, ©2007  |z 0123738598  |w (DLC) 2007000712  |w (OCoLC)77716861 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=287933  |z Texto completo 
938 |a Baker and Taylor  |b BTCP  |n BK0007219680 
938 |a EBL - Ebook Library  |b EBLB  |n EBL287933 
938 |a ebrary  |b EBRY  |n ebr10166992 
938 |a YBP Library Services  |b YANK  |n 2543621 
994 |a 92  |b IZTAP