|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn137237316 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
070529s2006 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d OCLCQ
|d UBY
|d YDXCP
|d IDEBK
|d SFB
|d YNG
|d COO
|d OCLCQ
|d DKDLA
|d CCO
|d E7B
|d FVL
|d OCLCQ
|d CUS
|d OCLCF
|d OCLCQ
|d OCLCO
|d MEAUC
|d OCLCQ
|d AZK
|d STBDS
|d CNNOR
|d MOR
|d PIFAG
|d PIFBR
|d OCLCQ
|d WY@
|d U3W
|d LUE
|d STF
|d BRL
|d WRM
|d INT
|d VT2
|d OCLCQ
|d WYU
|d YOU
|d OCLCQ
|d A6Q
|d OCLCQ
|d HS0
|d UKCRE
|d UCW
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d EBLCP
|d MERUC
|d ZCU
|d ICG
|d DEBBG
|d AU@
|d TKN
|d DKC
|d OL$
|d ANO
|d OCLCQ
|d OCLCO
|d OCLCL
|
015 |
|
|
|a GBA627023
|2 bnb
|
016 |
7 |
|
|a 013414266
|2 Uk
|
019 |
|
|
|a 185035648
|a 191924113
|a 243601449
|a 271200907
|a 319064482
|a 473739389
|a 474198307
|a 567997735
|a 648167259
|a 722547302
|a 728033610
|a 888511435
|a 912932839
|a 922952831
|a 961646996
|a 962617348
|a 988532549
|a 992029433
|a 992079042
|a 1035700870
|a 1037448798
|a 1037912700
|a 1038621868
|a 1055359756
|a 1078029738
|a 1081227014
|a 1083557399
|a 1102534574
|a 1153463904
|a 1196348676
|a 1228565741
|
020 |
|
|
|a 9781429469944
|q (electronic bk.)
|
020 |
|
|
|a 1429469943
|q (electronic bk.)
|
020 |
|
|
|a 0191513873
|
020 |
|
|
|a 9780191513879
|
020 |
|
|
|a 019857102X
|
020 |
|
|
|a 9780198571025
|
020 |
|
|
|a 9780191718946
|
020 |
|
|
|a 0191718947
|
029 |
1 |
|
|a AU@
|b 000046164208
|
029 |
1 |
|
|a AU@
|b 000053230469
|
029 |
1 |
|
|a AU@
|b 000072985453
|
029 |
1 |
|
|a DEBBG
|b BV044094036
|
029 |
1 |
|
|a NZ1
|b 12060623
|
035 |
|
|
|a (OCoLC)137237316
|z (OCoLC)185035648
|z (OCoLC)191924113
|z (OCoLC)243601449
|z (OCoLC)271200907
|z (OCoLC)319064482
|z (OCoLC)473739389
|z (OCoLC)474198307
|z (OCoLC)567997735
|z (OCoLC)648167259
|z (OCoLC)722547302
|z (OCoLC)728033610
|z (OCoLC)888511435
|z (OCoLC)912932839
|z (OCoLC)922952831
|z (OCoLC)961646996
|z (OCoLC)962617348
|z (OCoLC)988532549
|z (OCoLC)992029433
|z (OCoLC)992079042
|z (OCoLC)1035700870
|z (OCoLC)1037448798
|z (OCoLC)1037912700
|z (OCoLC)1038621868
|z (OCoLC)1055359756
|z (OCoLC)1078029738
|z (OCoLC)1081227014
|z (OCoLC)1083557399
|z (OCoLC)1102534574
|z (OCoLC)1153463904
|z (OCoLC)1196348676
|z (OCoLC)1228565741
|
050 |
|
4 |
|a QA243
|b .H42 2006eb
|
072 |
|
7 |
|a MAT
|x 022000
|2 bisacsh
|
082 |
0 |
4 |
|a 512.74
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Hida, Haruzo,
|e author.
|
245 |
1 |
0 |
|a Hilbert modular forms and Iwasawa theory /
|c Haruzo Hida.
|
260 |
|
|
|a Oxford :
|b Clarendon,
|c 2006.
|
300 |
|
|
|a 1 online resource (xiv, 402 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|
490 |
1 |
|
|a Oxford mathematical monographs
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
8 |
|
|a Describing the applications found for the Wiles and Taylor technique, this book generalizes the deformation theoretic techniques of Wiles-Taylor to Hilbert modular forms (following Fujiwara's treatment), and also discusses applications found by the author.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a 1 Introduction; 1.1 Classical Iwasawa theory; 1.1.1 Galois theoretic interpretation of the class group; 1.1.2 The Iwasawa algebra as a deformation ring; 1.1.3 Pseudo-representations; 1.1.4 Two-dimensional universal deformations; 1.2 Selmer groups; 1.2.1 Deligne's rationality conjecture; 1.2.2 Ordinary Galois representations; 1.2.3 Greenberg's Selmer groups; 1.2.4 Selmer groups with general coefficients; 1.3 Deformation and adjoint square Selmer groups; 1.3.1 Nearly ordinary deformation rings; 1.3.2 Adjoint square Selmer groups and differentials
|
505 |
8 |
|
|a 2.2.2 Affine algebraic groups2.2.3 Schemes; 2.3 Automorphic forms on quaternion algebras; 2.3.1 Arithmetic quotients; 2.3.2 Archimedean Hilbert modular forms; 2.3.3 Hilbert modular forms with integral coefficients; 2.3.4 Duality and Hecke algebras; 2.3.5 Quaternionic automorphic forms; 2.3.6 The Jacquet-Langlands correspondence; 2.3.7 Local representations of GL(2); 2.3.8 Modular Galois representations; 2.4 The integral Jacquet-Langlands correspondence; 2.4.1 Classical Hecke operators; 2.4.2 Hecke algebras; 2.4.3 Cohomological correspondences; 2.4.4 Eichler-Shimura isomorphisms
|
505 |
8 |
|
|a 2.5 Theta series2.5.1 Quaternionic theta series; 2.5.2 Siegel's theta series; 2.5.3 Transformation formulas; 2.5.4 Theta series of imaginary quadratic fields; 2.6 The basis problem of Eichler; 2.6.1 The elliptic Jacquet-Langlands correspondence; 2.6.2 Eichler's integral correspondence; 3 Hecke algebras as Galois deformation rings; 3.1 Hecke algebras; 3.1.1 Automorphic forms on definite quaternions; 3.1.2 Hecke operators; 3.1.3 Inner products; 3.1.4 Ordinary Hecke algebras; 3.1.5 Automorphic forms of higher weight; 3.2 Galois deformation; 3.2.1 Minimal deformation problems
|
505 |
8 |
|
|a 3.2.2 Tangent spaces of local deformation functors3.2.3 Taylor-Wiles systems; 3.2.4 Hecke algebras are universal; 3.2.5 Flat deformations; 3.2.6 Freeness over the Hecke algebra; 3.2.7 Hilbert modular basis problems; 3.2.8 Locally cyclotomic deformation; 3.2.9 Locally cyclotomic Hecke algebras; 3.2.10 Global deformation over a p-adic field; 3.3 Base change; 3.3.1 p-Ordinary Jacquet-Langlands correspondence; 3.3.2 Base fields of odd degree; 3.3.3 Automorphic base change; 3.3.4 Galois base change; 3.4 L-invariants of Hilbert modular forms; 3.4.1 Statement of the result
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Forms, Modular.
|
650 |
|
0 |
|a Hilbert modular surfaces.
|
650 |
|
0 |
|a Iwasawa theory.
|
650 |
|
6 |
|a Formes modulaires.
|
650 |
|
6 |
|a Surfaces modulaires de Hilbert.
|
650 |
|
6 |
|a Théorie d'Iwasawa.
|
650 |
|
7 |
|a MATHEMATICS
|x Number Theory.
|2 bisacsh
|
650 |
|
7 |
|a Forms, Modular
|2 fast
|
650 |
|
7 |
|a Hilbert modular surfaces
|2 fast
|
650 |
|
7 |
|a Iwasawa theory
|2 fast
|
758 |
|
|
|i has work:
|a Hilbert modular forms and Iwasawa theory (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGrdK9ytmBYHG6WMCFcybd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Hida, Haruzo.
|t Hilbert modular forms and Iwasawa theory.
|d Oxford : Clarendon, 2006
|z 019857102X
|z 9780198571025
|w (DLC) 2006299136
|w (OCoLC)64554619
|
830 |
|
0 |
|a Oxford mathematical monographs.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3052127
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3052127
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10167530
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 192126
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 90406
|
938 |
|
|
|a Oxford University Press USA
|b OUPR
|n EDZ0000073182
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2564591
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3379713
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 2768959
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11588901
|
994 |
|
|
|a 92
|b IZTAP
|