Cargando…

Hilbert modular forms and Iwasawa theory /

Describing the applications found for the Wiles and Taylor technique, this book generalizes the deformation theoretic techniques of Wiles-Taylor to Hilbert modular forms (following Fujiwara's treatment), and also discusses applications found by the author.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hida, Haruzo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Clarendon, 2006.
Colección:Oxford mathematical monographs.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn137237316
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 070529s2006 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d UBY  |d YDXCP  |d IDEBK  |d SFB  |d YNG  |d COO  |d OCLCQ  |d DKDLA  |d CCO  |d E7B  |d FVL  |d OCLCQ  |d CUS  |d OCLCF  |d OCLCQ  |d OCLCO  |d MEAUC  |d OCLCQ  |d AZK  |d STBDS  |d CNNOR  |d MOR  |d PIFAG  |d PIFBR  |d OCLCQ  |d WY@  |d U3W  |d LUE  |d STF  |d BRL  |d WRM  |d INT  |d VT2  |d OCLCQ  |d WYU  |d YOU  |d OCLCQ  |d A6Q  |d OCLCQ  |d HS0  |d UKCRE  |d UCW  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d EBLCP  |d MERUC  |d ZCU  |d ICG  |d DEBBG  |d AU@  |d TKN  |d DKC  |d OL$  |d ANO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBA627023  |2 bnb 
016 7 |a 013414266  |2 Uk 
019 |a 185035648  |a 191924113  |a 243601449  |a 271200907  |a 319064482  |a 473739389  |a 474198307  |a 567997735  |a 648167259  |a 722547302  |a 728033610  |a 888511435  |a 912932839  |a 922952831  |a 961646996  |a 962617348  |a 988532549  |a 992029433  |a 992079042  |a 1035700870  |a 1037448798  |a 1037912700  |a 1038621868  |a 1055359756  |a 1078029738  |a 1081227014  |a 1083557399  |a 1102534574  |a 1153463904  |a 1196348676  |a 1228565741 
020 |a 9781429469944  |q (electronic bk.) 
020 |a 1429469943  |q (electronic bk.) 
020 |a 0191513873 
020 |a 9780191513879 
020 |a 019857102X 
020 |a 9780198571025 
020 |a 9780191718946 
020 |a 0191718947 
029 1 |a AU@  |b 000046164208 
029 1 |a AU@  |b 000053230469 
029 1 |a AU@  |b 000072985453 
029 1 |a DEBBG  |b BV044094036 
029 1 |a NZ1  |b 12060623 
035 |a (OCoLC)137237316  |z (OCoLC)185035648  |z (OCoLC)191924113  |z (OCoLC)243601449  |z (OCoLC)271200907  |z (OCoLC)319064482  |z (OCoLC)473739389  |z (OCoLC)474198307  |z (OCoLC)567997735  |z (OCoLC)648167259  |z (OCoLC)722547302  |z (OCoLC)728033610  |z (OCoLC)888511435  |z (OCoLC)912932839  |z (OCoLC)922952831  |z (OCoLC)961646996  |z (OCoLC)962617348  |z (OCoLC)988532549  |z (OCoLC)992029433  |z (OCoLC)992079042  |z (OCoLC)1035700870  |z (OCoLC)1037448798  |z (OCoLC)1037912700  |z (OCoLC)1038621868  |z (OCoLC)1055359756  |z (OCoLC)1078029738  |z (OCoLC)1081227014  |z (OCoLC)1083557399  |z (OCoLC)1102534574  |z (OCoLC)1153463904  |z (OCoLC)1196348676  |z (OCoLC)1228565741 
050 4 |a QA243  |b .H42 2006eb 
072 7 |a MAT  |x 022000  |2 bisacsh 
082 0 4 |a 512.74  |2 22 
049 |a UAMI 
100 1 |a Hida, Haruzo,  |e author. 
245 1 0 |a Hilbert modular forms and Iwasawa theory /  |c Haruzo Hida. 
260 |a Oxford :  |b Clarendon,  |c 2006. 
300 |a 1 online resource (xiv, 402 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Oxford mathematical monographs 
504 |a Includes bibliographical references and index. 
520 8 |a Describing the applications found for the Wiles and Taylor technique, this book generalizes the deformation theoretic techniques of Wiles-Taylor to Hilbert modular forms (following Fujiwara's treatment), and also discusses applications found by the author. 
588 0 |a Print version record. 
505 0 |a 1 Introduction; 1.1 Classical Iwasawa theory; 1.1.1 Galois theoretic interpretation of the class group; 1.1.2 The Iwasawa algebra as a deformation ring; 1.1.3 Pseudo-representations; 1.1.4 Two-dimensional universal deformations; 1.2 Selmer groups; 1.2.1 Deligne's rationality conjecture; 1.2.2 Ordinary Galois representations; 1.2.3 Greenberg's Selmer groups; 1.2.4 Selmer groups with general coefficients; 1.3 Deformation and adjoint square Selmer groups; 1.3.1 Nearly ordinary deformation rings; 1.3.2 Adjoint square Selmer groups and differentials 
505 8 |a 2.2.2 Affine algebraic groups2.2.3 Schemes; 2.3 Automorphic forms on quaternion algebras; 2.3.1 Arithmetic quotients; 2.3.2 Archimedean Hilbert modular forms; 2.3.3 Hilbert modular forms with integral coefficients; 2.3.4 Duality and Hecke algebras; 2.3.5 Quaternionic automorphic forms; 2.3.6 The Jacquet-Langlands correspondence; 2.3.7 Local representations of GL(2); 2.3.8 Modular Galois representations; 2.4 The integral Jacquet-Langlands correspondence; 2.4.1 Classical Hecke operators; 2.4.2 Hecke algebras; 2.4.3 Cohomological correspondences; 2.4.4 Eichler-Shimura isomorphisms 
505 8 |a 2.5 Theta series2.5.1 Quaternionic theta series; 2.5.2 Siegel's theta series; 2.5.3 Transformation formulas; 2.5.4 Theta series of imaginary quadratic fields; 2.6 The basis problem of Eichler; 2.6.1 The elliptic Jacquet-Langlands correspondence; 2.6.2 Eichler's integral correspondence; 3 Hecke algebras as Galois deformation rings; 3.1 Hecke algebras; 3.1.1 Automorphic forms on definite quaternions; 3.1.2 Hecke operators; 3.1.3 Inner products; 3.1.4 Ordinary Hecke algebras; 3.1.5 Automorphic forms of higher weight; 3.2 Galois deformation; 3.2.1 Minimal deformation problems 
505 8 |a 3.2.2 Tangent spaces of local deformation functors3.2.3 Taylor-Wiles systems; 3.2.4 Hecke algebras are universal; 3.2.5 Flat deformations; 3.2.6 Freeness over the Hecke algebra; 3.2.7 Hilbert modular basis problems; 3.2.8 Locally cyclotomic deformation; 3.2.9 Locally cyclotomic Hecke algebras; 3.2.10 Global deformation over a p-adic field; 3.3 Base change; 3.3.1 p-Ordinary Jacquet-Langlands correspondence; 3.3.2 Base fields of odd degree; 3.3.3 Automorphic base change; 3.3.4 Galois base change; 3.4 L-invariants of Hilbert modular forms; 3.4.1 Statement of the result 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Forms, Modular. 
650 0 |a Hilbert modular surfaces. 
650 0 |a Iwasawa theory. 
650 6 |a Formes modulaires. 
650 6 |a Surfaces modulaires de Hilbert. 
650 6 |a Théorie d'Iwasawa. 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Forms, Modular  |2 fast 
650 7 |a Hilbert modular surfaces  |2 fast 
650 7 |a Iwasawa theory  |2 fast 
758 |i has work:  |a Hilbert modular forms and Iwasawa theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrdK9ytmBYHG6WMCFcybd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Hida, Haruzo.  |t Hilbert modular forms and Iwasawa theory.  |d Oxford : Clarendon, 2006  |z 019857102X  |z 9780198571025  |w (DLC) 2006299136  |w (OCoLC)64554619 
830 0 |a Oxford mathematical monographs. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3052127  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3052127 
938 |a ebrary  |b EBRY  |n ebr10167530 
938 |a EBSCOhost  |b EBSC  |n 192126 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 90406 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0000073182 
938 |a YBP Library Services  |b YANK  |n 2564591 
938 |a YBP Library Services  |b YANK  |n 3379713 
938 |a YBP Library Services  |b YANK  |n 2768959 
938 |a YBP Library Services  |b YANK  |n 11588901 
994 |a 92  |b IZTAP