Cargando…

Semi-supervised learning /

A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Chapelle, Olivier, Schölkopf, Bernhard, Zien, Alexander
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2006.
Colección:Adaptive computation and machine learning.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Series Foreword; Preface; 1
  • Introduction to Semi-Supervised Learning; 2
  • A Taxonomy for Semi-Supervised Learning Methods; 3
  • Semi-Supervised Text Classification Using EM; 4
  • Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5
  • Probabilistic Semi-Supervised Clustering with Constraints; 6
  • Transductive Support Vector Machines; 7
  • Semi-Supervised Learning Using Semi- Definite Programming; 8
  • Gaussian Processes and the Null-Category Noise Model; 9
  • Entropy Regularization; 10
  • Data-Dependent Regularization.
  • 11
  • Label Propagation and Quadratic Criterion12
  • The Geometric Basis of Semi-Supervised Learning; 13
  • Discrete Regularization; 14
  • Semi-Supervised Learning with Conditional Harmonic Mixing; 15
  • Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17
  • Modifying Distances; 18
  • Large-Scale Algorithms; 19
  • Semi-Supervised Protein Classification Using Cluster Kernels; 20
  • Prediction of Protein Function from Networks; 21
  • Analysis of Benchmarks; 22
  • An Augmented PAC Model for Semi- Supervised Learning.
  • 23
  • Metric-Based Approaches for Semi- Supervised Regression and Classification24
  • Transductive Inference and Semi-Supervised Learning; 25
  • A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index.