Cargando…

Semi-supervised learning /

A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Chapelle, Olivier, Schölkopf, Bernhard, Zien, Alexander
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Mass. : MIT Press, ©2006.
Colección:Adaptive computation and machine learning.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000004a 4500
001 EBOOKCENTRAL_ocm76824411
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 061129s2006 maua ob 000 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d TEX  |d OCLCQ  |d N$T  |d IDEBK  |d OCLCQ  |d IEEEE  |d OCLCF  |d OTZ  |d NLGGC  |d OCLCQ  |d COCUF  |d E7B  |d DKDLA  |d OCLCQ  |d EBLCP  |d OCLCQ  |d AZK  |d LOA  |d STBDS  |d JBG  |d DEBSZ  |d AGLDB  |d OCLCQ  |d MOR  |d PIFAG  |d PIFBR  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d NJR  |d WY@  |d U3W  |d OCLCQ  |d LUE  |d BRL  |d STF  |d WRM  |d OCLCQ  |d VTS  |d MERER  |d OCLCQ  |d ICG  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d MITPR  |d A6Q  |d LEAUB  |d DKC  |d OCLCQ  |d OL$  |d OCLCQ  |d K6U  |d SFB  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 144221750  |a 182530233  |a 473855448  |a 482338380  |a 648224249  |a 698448592  |a 815786484  |a 888487196  |a 961552592  |a 962681986  |a 966247738  |a 988479849  |a 991907509  |a 992079045  |a 1011926238  |a 1037506878  |a 1037915633  |a 1038619749  |a 1055357085  |a 1062909239  |a 1081229069  |a 1083554933  |a 1102553906  |a 1125509500  |a 1130046352 
020 |a 9780262255899  |q (electronic bk.) 
020 |a 0262255898  |q (electronic bk.) 
020 |a 0262033585  |q (alk. paper) 
020 |a 9780262033589  |q (alk. paper) 
020 |a 1282096184 
020 |a 9781282096189 
020 |a 1429414081 
020 |a 9781429414081 
029 1 |a AU@  |b 000051284596 
029 1 |a AU@  |b 000051411140 
029 1 |a AU@  |b 000053228565 
029 1 |a DEBBG  |b BV042508932 
029 1 |a DEBBG  |b BV042957137 
029 1 |a DEBBG  |b BV044104972 
029 1 |a DEBSZ  |b 422249084 
029 1 |a DEBSZ  |b 482803754 
029 1 |a GBVCP  |b 799433179 
029 1 |a NZ1  |b 12060331 
029 1 |a YDXCP  |b 2493829 
029 1 |a AU@  |b 000075719946 
029 1 |a AU@  |b 000075829824 
029 1 |a AU@  |b 000075858072 
029 1 |a AU@  |b 000075873809 
035 |a (OCoLC)76824411  |z (OCoLC)144221750  |z (OCoLC)182530233  |z (OCoLC)473855448  |z (OCoLC)482338380  |z (OCoLC)648224249  |z (OCoLC)698448592  |z (OCoLC)815786484  |z (OCoLC)888487196  |z (OCoLC)961552592  |z (OCoLC)962681986  |z (OCoLC)966247738  |z (OCoLC)988479849  |z (OCoLC)991907509  |z (OCoLC)992079045  |z (OCoLC)1011926238  |z (OCoLC)1037506878  |z (OCoLC)1037915633  |z (OCoLC)1038619749  |z (OCoLC)1055357085  |z (OCoLC)1062909239  |z (OCoLC)1081229069  |z (OCoLC)1083554933  |z (OCoLC)1102553906  |z (OCoLC)1125509500  |z (OCoLC)1130046352 
037 |a 6173  |b MIT Press 
037 |a 9780262255899  |b MIT Press 
050 4 |a Q325.75  |b .S42 2006eb 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
072 7 |a K  |2 bicssc 
082 0 4 |a 006.3/1  |2 22 
049 |a UAMI 
245 0 0 |a Semi-supervised learning /  |c [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2006. 
300 |a 1 online resource (x, 508 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Adaptive computation and machine learning 
504 |a Includes bibliographical references (pages 479-497). 
588 0 |a Print version record. 
520 8 |a A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research. 
505 0 |a Series Foreword; Preface; 1 -- Introduction to Semi-Supervised Learning; 2 -- A Taxonomy for Semi-Supervised Learning Methods; 3 -- Semi-Supervised Text Classification Using EM; 4 -- Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 -- Probabilistic Semi-Supervised Clustering with Constraints; 6 -- Transductive Support Vector Machines; 7 -- Semi-Supervised Learning Using Semi- Definite Programming; 8 -- Gaussian Processes and the Null-Category Noise Model; 9 -- Entropy Regularization; 10 -- Data-Dependent Regularization. 
505 8 |a 11 -- Label Propagation and Quadratic Criterion12 -- The Geometric Basis of Semi-Supervised Learning; 13 -- Discrete Regularization; 14 -- Semi-Supervised Learning with Conditional Harmonic Mixing; 15 -- Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 -- Modifying Distances; 18 -- Large-Scale Algorithms; 19 -- Semi-Supervised Protein Classification Using Cluster Kernels; 20 -- Prediction of Protein Function from Networks; 21 -- Analysis of Benchmarks; 22 -- An Augmented PAC Model for Semi- Supervised Learning. 
505 8 |a 23 -- Metric-Based Approaches for Semi- Supervised Regression and Classification24 -- Transductive Inference and Semi-Supervised Learning; 25 -- A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Supervised learning (Machine learning) 
650 6 |a Apprentissage supervisé (Intelligence artificielle) 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Supervised learning (Machine learning)  |2 fast 
653 |a COMPUTER SCIENCE/Machine Learning & Neural Networks 
700 1 |a Chapelle, Olivier. 
700 1 |a Schölkopf, Bernhard. 
700 1 |a Zien, Alexander. 
758 |i has work:  |a Semi-supervised learning (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGFQqvqhPRRX4gg9XkPrtq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Semi-supervised learning.  |d Cambridge, Mass. : MIT Press, ©2006  |z 0262033585  |w (DLC) 2006044448  |w (OCoLC)64898359 
830 0 |a Adaptive computation and machine learning. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3338523  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25453756 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3338523 
938 |a ebrary  |b EBRY  |n ebr10173579 
938 |a EBSCOhost  |b EBSC  |n 170037 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 209618 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0000130718 
938 |a YBP Library Services  |b YANK  |n 2493829 
938 |a YBP Library Services  |b YANK  |n 3285232 
994 |a 92  |b IZTAP