Methods of contemporary gauge theory /
This book introduces the quantum theory of gauge fields. Emphasis is placed on four non-perturbative methods: path integrals, lattice gauge theories, the 1/N expansion, and reduced matrix models, all of which have important contemporary applications. Written as a textbook, it assumes a knowledge of...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Cambridge University Press,
2002.
|
Colección: | Cambridge monographs on mathematical physics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Path Integrals
- Operator calculus
- Free propagator
- Euclidean formulation
- Path-ordering of operators
- Feynman disentangling
- Calculation of the Gaussian path integral
- Transition amplitudes
- Propagators in external field
- Second quantization
- Integration over fields
- Grassmann variables
- Perturbation theory
- Schwinger-Dyson equations
- Commutator terms
- Schwinger-Dyson equations (continued)
- Regularization
- Quantum anomalies from path integral
- QED via path integral
- Chiral Ward identity
- Chiral anomaly
- Chiral anomaly (calculation)
- Scale anomaly
- Instantons in quantum mechanics
- Double-well potential
- The instanton solution
- Instanton contribution to path integral
- Symmetry restoration by instantons
- Topological charge and [theta]-vacua
- Lattice Gauge Theories
- Observables in gauge theories
- Gauge invariance
- Phase factors (definition)
- Phase factors (properties)
- Aharonov-Bohm effect
- Gauge fields on a lattice
- Sites, links, plaquettes and all that
- Lattice formulation
- The Haar measure
- Wilson loops
- Strong-coupling expansion
- Area law and confinement
- Asymptotic scaling
- Lattice methods
- Phase transitions
- Mean-field method
- Mean-field method (variational)
- Lattice renormalization group
- Monte Carlo method
- Some Monte Carlo results
- Fermions on a lattice
- Chiral fermions
- Fermion doubling
- Kogut-Susskind fermions
- Wilson fermions
- Quark condensate
- Finite temperatures
- Feynman-Kac formula.